論文の概要: Time Dependent Hamiltonian Simulation Using Discrete Clock Constructions
- arxiv url: http://arxiv.org/abs/2203.11353v2
- Date: Fri, 5 Apr 2024 15:37:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-09 00:53:45.542701
- Title: Time Dependent Hamiltonian Simulation Using Discrete Clock Constructions
- Title(参考訳): 離散クロック構成を用いた時間依存ハミルトニアンシミュレーション
- Authors: Jacob Watkins, Nathan Wiebe, Alessandro Roggero, Dean Lee,
- Abstract要約: 時間依存力学を時間依存システムとして符号化するためのフレームワークを提供する。
まず、拡張クロックシステム上で量子化を行う時間依存シミュレーションアルゴリズムを作成する。
第2に、時間順序指数に対する多積公式の自然な一般化を定義する。
- 参考スコア(独自算出の注目度): 42.3779227963298
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Compared with time independent Hamiltonians, the dynamics of generic quantum Hamiltonians $H(t)$ are complicated by the presence of time ordering in the evolution operator. In the context of digital quantum simulation, this difficulty prevents a direct adaptation of time independent simulation algorithms for time dependent simulation. However, there exists a framework within the theory of dynamical systems which eliminates time ordering by adding a "clock" degree of freedom. In this work, we provide a computational framework, based on this reduction, for encoding time dependent dynamics as time independent systems. As a result, we make two advances in digital Hamiltonian simulation. First, we create a time dependent simulation algorithm based on performing qubitization on the augmented clock system, and in doing so, provide the first qubitization-based approach to time dependent Hamiltonians that goes beyond Trotterization of the ordered exponential. Second, we define a natural generalization of multiproduct formulas for time-ordered exponentials, then propose and analyze an algorithm based on these formulas. Unlike other algorithms of similar accuracy, the multiproduct approach achieves commutator scaling, meaning that this method outperforms existing methods for physically-local time dependent Hamiltonians. Our work reduces the disparity between time dependent and time independent simulation and indicates a step towards optimal quantum simulation of time dependent Hamiltonians.
- Abstract(参考訳): 時間独立ハミルトニアンと比較して、一般量子ハミルトニアン$H(t)$の力学は進化作用素における時間順序の存在によって複雑である。
デジタル量子シミュレーションの文脈では、この困難さは時間依存シミュレーションのための時間依存シミュレーションアルゴリズムの直接的な適応を防ぐ。
しかし、力学系の理論には「時計」自由度を加えることで時間秩序をなくす枠組みがある。
本研究では,時間依存力学を時間依存系として符号化する計算フレームワークを提案する。
その結果,デジタルハミルトニアンシミュレーションの2つの進歩が得られた。
まず、拡張クロックシステム上で量子化を実行することに基づく時間依存シミュレーションアルゴリズムを作成し、それを用いて、順序付けられた指数関数のトロッター化を超える時間依存ハミルトニアンに対する最初の量子化に基づくアプローチを提供する。
第2に、時間順指数に対する多積公式の自然な一般化を定義し、これらの公式に基づいてアルゴリズムを提案し、解析する。
同様の精度の他のアルゴリズムとは異なり、多積法は可換スケーリングを達成するため、この手法は物理的に局所的な時間依存ハミルトニアンの既存の手法よりも優れている。
我々の研究は、時間依存と時間依存シミュレーションの相違を減らし、時間依存ハミルトンの最適量子シミュレーションへのステップを示す。
関連論文リスト
- A unifying framework for quantum simulation algorithms for time-dependent Hamiltonian dynamics [27.781524610367782]
我々は、Sambe-Howlandの時計が時間依存ハミルトニアン力学をシミュレートするための統一的なフレームワークとして機能することを示す。
また、このフレームワークが時間に依存しない手法と組み合わせることで、時間に依存したダイナミクスをシミュレートする効率的なアルゴリズムの開発が容易になることを示す。
論文 参考訳(メタデータ) (2024-11-05T15:26:44Z) - Variational-Cartan Quantum Dynamics Simulations of Excitation Dynamics [7.865137519552981]
量子力学シミュレーション(QDS)は、量子コンピューティングの最も期待されている応用の1つである。
ハミルトンシミュレーションアルゴリズムを実装するための量子回路深さは、一般に時間に依存する。
本研究は, 時間依存システムと変分ハミルトンシミュレーションを組み合わせることで, 時間依存システムを研究するためのCDベースのハミルトンシミュレーションアルゴリズムを一般化する。
論文 参考訳(メタデータ) (2024-06-20T09:11:46Z) - Quantum simulation for time-dependent Hamiltonians -- with applications
to non-autonomous ordinary and partial differential equations [31.223649540164928]
我々は、任意の非自律的ユニタリ力学系を自律的ユニタリ系に変換する代替形式論を提案する。
これにより、時間依存ハミルトニアンのシミュレーションは、時間依存ハミルトニアンのシミュレーションほど難しくない。
時間依存型ハミルトニアンのための新しい量子プロトコルは、資源効率の良い方法で、測定なしで実行可能であることを示す。
論文 参考訳(メタデータ) (2023-12-05T14:59:23Z) - Optimal/Nearly-optimal simulation of multi-periodic time-dependent
Hamiltonians [0.0]
我々は、複数の時間周期を持つ時間依存ハミルトニアンをシミュレートするためのQETベースのアプローチを確立する。
時間依存の難しさを克服し、多周期時間依存ハミルトニアンの力学をシミュレートすることができる。
論文 参考訳(メタデータ) (2023-01-16T01:53:09Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Algebraic Compression of Quantum Circuits for Hamiltonian Evolution [52.77024349608834]
時間依存ハミルトニアンの下でのユニタリ進化は、量子ハードウェアにおけるシミュレーションの重要な構成要素である。
本稿では、トロッターステップを1ブロックの量子ゲートに圧縮するアルゴリズムを提案する。
この結果、ハミルトニアンのある種のクラスに対する固定深度時間進化がもたらされる。
論文 参考訳(メタデータ) (2021-08-06T19:38:01Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - Quantum algorithm for time-dependent Hamiltonian simulation by
permutation expansion [6.338178373376447]
時間依存ハミルトニアンの力学シミュレーションのための量子アルゴリズムを提案する。
アルゴリズムのコストはハミルトニアン周波数に依存しないことを示す。
論文 参考訳(メタデータ) (2021-03-29T05:02:02Z) - Fast and differentiable simulation of driven quantum systems [58.720142291102135]
我々は、ダイソン展開に基づく半解析手法を導入し、標準数値法よりもはるかに高速に駆動量子系を時間発展させることができる。
回路QEDアーキテクチャにおけるトランスモン量子ビットを用いた2量子ゲートの最適化結果を示す。
論文 参考訳(メタデータ) (2020-12-16T21:43:38Z) - Efficient classical simulation of random shallow 2D quantum circuits [104.50546079040298]
ランダム量子回路は古典的にシミュレートするのは難しいと見なされる。
典型例の近似シミュレーションは, 正確なシミュレーションとほぼ同程度に困難であることを示す。
また、十分に浅いランダム回路はより一般的に効率的にシミュレーション可能であると推測する。
論文 参考訳(メタデータ) (2019-12-31T19:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。