Fact-nets: towards a mathematical framework for relational quantum
mechanics
- URL: http://arxiv.org/abs/2204.00335v2
- Date: Tue, 15 Nov 2022 14:28:28 GMT
- Title: Fact-nets: towards a mathematical framework for relational quantum
mechanics
- Authors: Pierre Martin-Dussaud, Titouan Carette, Jan G{\l}owacki, Vaclav
Zatloukal, Federico Zalamea
- Abstract summary: The relational interpretation of quantum mechanics (RQM) has received a growing interest since its first formulation in 1996.
This paper proposes a radical reformulation of the mathematical framework of quantum mechanics which is relational from the start: fact-nets.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The relational interpretation of quantum mechanics (RQM) has received a
growing interest since its first formulation in 1996. Usually presented as an
interpretational layer over the usual quantum mechanics formalism, it appears
as a philosophical perspective without proper mathematical counterparts. This
state of affairs has direct consequences on the scientific debate on RQM which
still suffers from misunderstandings and imprecise statements. In an attempt to
clarify those debates, the present paper proposes a radical reformulation of
the mathematical framework of quantum mechanics which is relational from the
start: fact-nets. The core idea is that all statements about the world, facts,
are binary entities involving two systems that can be symmetrically thought of
as observed and observer. We initiate a study of the fact-nets formalism and
outline how it can shed new relational light on some familiar quantum features.
Related papers
- Relational Quantum Mechanics and Contextuality [0.0]
I discuss the hypothesis that RQM follows contextuality that changes the system.
I then examine how the approach of quantum logic in formal histories can be used to clarify which information about a system can be shared between different observers.
arXiv Detail & Related papers (2023-08-17T11:25:35Z) - Conceptual diagrams in Quantum Mechanics [0.0]
The study of Quantum Mechanics is usually presented, even to future scientists, within the only framework developed by Bohr and the Copenhagen researchers, known as the Copenhagen interpretation.
We present a set of Conceptual Diagrams elaborated and designed to expose and facilitate the visualization of elements intervening in any interpretation of Quantum Mechanics.
arXiv Detail & Related papers (2023-03-25T00:15:53Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - Quantum indistinguishability through exchangeable desirable gambles [69.62715388742298]
Two particles are identical if all their intrinsic properties, such as spin and charge, are the same.
Quantum mechanics is seen as a normative and algorithmic theory guiding an agent to assess her subjective beliefs represented as (coherent) sets of gambles.
We show how sets of exchangeable observables (gambles) may be updated after a measurement and discuss the issue of defining entanglement for indistinguishable particle systems.
arXiv Detail & Related papers (2021-05-10T13:11:59Z) - Experimental Validation of Fully Quantum Fluctuation Theorems Using
Dynamic Bayesian Networks [48.7576911714538]
Fluctuation theorems are fundamental extensions of the second law of thermodynamics for small systems.
We experimentally verify detailed and integral fully quantum fluctuation theorems for heat exchange using two quantum-correlated thermal spins-1/2 in a nuclear magnetic resonance setup.
arXiv Detail & Related papers (2020-12-11T12:55:17Z) - One-shot quantum error correction of classical and quantum information [10.957528713294874]
Quantum error correction (QEC) is one of the central concepts in quantum information science.
We provide a form of capacity theorem for both classical and quantum information.
We show that a demonstration of QEC by short random quantum circuits is feasible.
arXiv Detail & Related papers (2020-11-02T01:24:59Z) - Understanding Quantum Mechanics (Beyond Metaphysical Dogmatism and Naive
Empiricism) [0.0]
We will argue that the reason behind the impossibility to reach a meaningful answer to this question is strictly related to the 20th Century Bohrian-positivist re-foundation of physics.
We will also argue that the possibility of understanding QM is at plain sight, given we return to the original framework of physics in which the meaning of understanding has always been clear.
arXiv Detail & Related papers (2020-09-01T14:40:44Z) - Measuring Quantum Superpositions (Or, "It is only the theory which
decides what can be observed.") [0.0]
We argue that the ad hoc introduction of the projection postulate (or measurement rule) can be understood as a necessary requirement coming from a naive empiricist standpoint.
We discuss the general physical conditions for measuring and observing quantum superpositions.
arXiv Detail & Related papers (2020-07-02T14:30:56Z) - Preferred basis, decoherence and a quantum state of the Universe [77.34726150561087]
We review a number of issues in foundations of quantum theory and quantum cosmology.
These issues can be considered as a part of the scientific legacy of H.D. Zeh.
arXiv Detail & Related papers (2020-06-28T18:07:59Z) - Quantum simulation of quantum field theories as quantum chemistry [9.208624182273288]
Conformal truncation is a powerful numerical method for solving generic strongly-coupled quantum field theories.
We show that quantum computation could not only help us understand fundamental physics in the lattice approximation, but also simulate quantum field theory methods directly.
arXiv Detail & Related papers (2020-04-28T01:20:04Z) - Bohr meets Rovelli: a dispositionalist account of the quantum limits of
knowledge [0.0]
I argue that the no-go theorems reflect on a formal level those practical and experimental settings that are needed to come to know the properties of physical systems.
I show that, as a consequence of a relationist and perspectival approach to quantum mechanics, the quantum state of the universe regarded as an isolated system cannot be known in principle.
arXiv Detail & Related papers (2020-01-13T22:45:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.