論文の概要: Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture
- arxiv url: http://arxiv.org/abs/2205.13748v1
- Date: Fri, 27 May 2022 03:24:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-05-30 14:48:59.947108
- Title: Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture
- Title(参考訳): Auto-PINN:物理インフォームド・ニューラルアーキテクチャの理解と最適化
- Authors: Yicheng Wang, Xiaotian Han, Chia-Yuan Chang, Daochen Zha, Ulisses
Braga-Neto, Xia Hu
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
- 参考スコア(独自算出の注目度): 49.19256265738107
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs) are revolutionizing science and
engineering practice by bringing together the power of deep learning to bear on
scientific computation. In forward modeling problems, PINNs are meshless
partial differential equation (PDE) solvers that can handle irregular,
high-dimensional physical domains. Naturally, the neural architecture
hyperparameters have a large impact on the efficiency and accuracy of the PINN
solver. However, this remains an open and challenging problem because of the
large search space and the difficulty of identifying a proper search objective
for PDEs. Here, we propose Auto-PINN, the first systematic, automated
hyperparameter optimization approach for PINNs, which employs Neural
Architecture Search (NAS) techniques to PINN design. Auto-PINN avoids manually
or exhaustively searching the hyperparameter space associated with PINNs. A
comprehensive set of pre-experiments using standard PDE benchmarks allows us to
probe the structure-performance relationship in PINNs. We find that the
different hyperparameters can be decoupled, and that the training loss function
of PINNs is a good search objective. Comparison experiments with baseline
methods demonstrate that Auto-PINN produces neural architectures with superior
stability and accuracy over alternative baselines.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
前方モデリング問題では、PINNはメッシュレス偏微分方程式(PDE)であり、不規則で高次元の物理領域を扱うことができる。
当然、ニューラルネットワークのハイパーパラメータは、pinnソルバの効率と精度に大きな影響を与えます。
しかし, 探索空間が大きく, pdesの適切な探索目標を特定することが困難であるため, オープンで困難な問題である。
本稿では,ニューラルネットワーク探索 (nas) 技術を用いたピン設計のための自動ハイパーパラメータ最適化手法であるauto-pinnを提案する。
Auto-PINNは、PINNに関連するハイパーパラメータ空間を手動または網羅的に検索することを避ける。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
異なるハイパーパラメータを分離でき、PINNのトレーニング損失関数が良い探索目的であることがわかった。
ベースライン法との比較実験により、Auto-PINNは、代替ベースラインよりも安定性と精度に優れたニューラルアーキテクチャを生成することを示した。
関連論文リスト
- Densely Multiplied Physics Informed Neural Networks [1.8554335256160261]
物理インフォームドニューラルネットワーク(PINN)は非線形偏微分方程式(PDE)を扱う大きな可能性を示している
本稿では,PINNの性能向上のためにニューラルネットワークアーキテクチャを改良する。
本稿では,隠れたレイヤの出力と隠れたレイヤの出力とを乗算する,密乗型PINN(DM-PINN)アーキテクチャを提案する。
論文 参考訳(メタデータ) (2024-02-06T20:45:31Z) - Binary structured physics-informed neural networks for solving equations
with rapidly changing solutions [3.6415476576196055]
偏微分方程式(PDE)を解くための有望なアプローチとして、物理情報ニューラルネットワーク(PINN)が登場した。
本稿では、ニューラルネットワークコンポーネントとしてバイナリ構造化ニューラルネットワーク(BsNN)を用いる、バイナリ構造化物理インフォームドニューラルネットワーク(BsPINN)フレームワークを提案する。
BsPINNは、PINNよりも収束速度と精度が優れている。
論文 参考訳(メタデータ) (2024-01-23T14:37:51Z) - AutoPINN: When AutoML Meets Physics-Informed Neural Networks [30.798918516407376]
PINNは、観測可能な変数を通じて、物理的なツールで観測できないクリティカルパラメータを推定できる。
既存のPINNは手動で設計されることが多く、時間を要するため、最適以下の性能につながる可能性がある。
本稿では,AutoMLとPINNを組み合わせることで,PINNの自動設計を可能にするフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-08T03:44:08Z) - Enforcing Continuous Physical Symmetries in Deep Learning Network for
Solving Partial Differential Equations [3.6317085868198467]
我々は,PDEのリー対称性によって誘導される不変表面条件をPINNの損失関数に組み込む,新しい対称性を持つ物理情報ニューラルネットワーク(SPINN)を提案する。
SPINNは、トレーニングポイントが少なく、ニューラルネットワークのよりシンプルなアーキテクチャで、PINNよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-06-19T00:44:22Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。