論文の概要: Knowledge Management System with NLP-Assisted Annotations: A Brief
Survey and Outlook
- arxiv url: http://arxiv.org/abs/2206.07304v1
- Date: Wed, 15 Jun 2022 05:20:38 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-16 12:49:48.762934
- Title: Knowledge Management System with NLP-Assisted Annotations: A Brief
Survey and Outlook
- Title(参考訳): NLPアノテーションを用いた知識管理システム : 簡単な調査と展望
- Authors: Baihan Lin
- Abstract要約: 従来のデータベースは通常、ロギングシステムとは相容れない。
本稿では,関係データベースを利用して階層的な情報をログする統合フレームワークを提案する。
この知識管理システムの枠組みは、改良された階層的メモ作成、AI支援型ブレインストーミング、多方向関係を含む新しい機能を実現する。
- 参考スコア(独自算出の注目度): 13.173307471333619
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Knowledge management systems are in high demand for industrial researchers,
chemical or research enterprises, or evidence-based decision making. However,
existing systems have limitations in categorizing and organizing paper insights
or relationships. Traditional databases are usually disjoint with logging
systems, which limit its utility in generating concise, collated overviews. In
this work, we briefly survey existing approaches of this problem space and
propose a unified framework that utilizes relational databases to log
hierarchical information to facilitate the research and writing process, or
generate useful knowledge from references or insights from connected concepts.
This framework of knowledge management system enables novel functionalities
encompassing improved hierarchical notetaking, AI-assisted brainstorming, and
multi-directional relationships. Potential applications include managing
inventories and changes for manufacture or research enterprises, or generating
analytic reports with evidence-based decision making.
- Abstract(参考訳): 知識管理システムは、産業研究者、化学または研究企業、または証拠に基づく意思決定に高い需要がある。
しかし、既存のシステムには、論文の洞察や関係の分類と整理に制限がある。
従来のデータベースはログシステムとは無関係であり、簡潔でコラーテッドな概要を生成するのに有用性が制限されている。
本稿では,この問題空間における既存手法を簡単に調査し,関係データベースを用いて階層的情報をログし,研究と記述のプロセスを容易にし,あるいは関連概念からの参照や洞察から有用な知識を生成する統一フレームワークを提案する。
この知識管理システムの枠組みは、改良された階層的メモ作成、AI支援型ブレインストーミング、多方向関係を含む新しい機能を実現する。
潜在的な応用としては、在庫管理や製造業や研究企業の変更、証拠に基づく意思決定による分析レポートの作成などがある。
関連論文リスト
- GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE)は、パラメトリックメモリと非パラメトリックメモリを統合する新しい推論フレームワークである。
本手法は,ゴールド回答検索ではなく,専門家の問題解決に類似した論理的・段階的推論手法を提案する。
論文 参考訳(メタデータ) (2024-10-11T03:05:06Z) - Engineering Conversational Search Systems: A Review of Applications, Architectures, and Functional Components [4.262342157729123]
本研究では,対話型検索システムの理論的研究と技術的実装の関連について検討する。
階層型アーキテクチャフレームワークを提案し,対話型検索システムの中核機能について説明する。
我々は,大規模言語モデルの急速な進歩を踏まえ,その能力,限界,今後の研究の方向性について考察する。
論文 参考訳(メタデータ) (2024-07-01T06:24:11Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteRにより、RMはLLM生成した知識コレクションを使用してクエリの知識を拡張することができる。
InteRは、最先端手法と比較して総合的に優れたゼロショット検索性能を実現する。
論文 参考訳(メタデータ) (2023-05-12T11:58:15Z) - UNTER: A Unified Knowledge Interface for Enhancing Pre-trained Language
Models [100.4659557650775]
構造化知識と非構造化知識の両方を活用する統一的な視点を提供するために、統一知識インターフェイスUNTERを提案する。
どちらの形態の知識も注入され、UNTERは一連の知識駆動NLPタスクの継続的な改善を得る。
論文 参考訳(メタデータ) (2023-05-02T17:33:28Z) - Rethinking Complex Queries on Knowledge Graphs with Neural Link Predictors [58.340159346749964]
本稿では,証明可能な推論能力を備えた複雑なクエリを用いたエンドツーエンド学習を支援するニューラルシンボリック手法を提案する。
これまでに検討されていない10種類の新しいクエリを含む新しいデータセットを開発する。
提案手法は,新しいデータセットにおいて先行手法を著しく上回り,既存データセットにおける先行手法を同時に上回っている。
論文 参考訳(メタデータ) (2023-04-14T11:35:35Z) - Q-TOD: A Query-driven Task-oriented Dialogue System [33.18698942938547]
本稿では,新しい問合せ型タスク指向対話システム,すなわちQ-TODを紹介する。
対話コンテキストから必須情報をクエリに抽出し、応答生成のための関連する知識レコードを検索する。
提案するQ-TODの有効性を評価するために,3つの公開タスク指向対話データセットに対するクエリアノテーションを収集する。
論文 参考訳(メタデータ) (2022-10-14T06:38:19Z) - Knowledge Graph Induction enabling Recommending and Trend Analysis: A
Corporate Research Community Use Case [11.907821975089064]
本稿では,企業研究コミュニティであるIBM ResearchがセマンティックWeb技術を用いて,統一知識グラフを創出する事例を紹介する。
誘導された知識を活用するための共通パターンのセットを特定し、それらをAPIとして公開する。
これらのパターンは、最も価値のあるユースケースや、緩和すべきユーザの痛点を特定するユーザ調査から生まれました。
論文 参考訳(メタデータ) (2022-07-11T20:51:28Z) - Retrieval-Enhanced Machine Learning [110.5237983180089]
本稿では,いくつかの既存モデルを含む汎用的な検索強化機械学習フレームワークについて述べる。
REMLは情報検索の慣例に挑戦し、最適化を含む中核領域における新たな進歩の機会を提示している。
REMLリサーチアジェンダは、情報アクセス研究の新しいスタイルの基礎を築き、機械学習と人工知能の進歩への道を開く。
論文 参考訳(メタデータ) (2022-05-02T21:42:45Z) - Tab2Know: Building a Knowledge Base from Tables in Scientific Papers [6.514665180383298]
本稿では,学術論文の表から知識ベースを構築するための,新たなエンドツーエンドシステムであるTab2Knowを紹介する。
統計に基づく分類器と論理に基づく推論の両方を利用するパイプラインを提案する。
コンピュータサイエンス分野における論文のコーパスを用いたアプローチの実証評価は,満足度を回復した。
論文 参考訳(メタデータ) (2021-07-28T11:56:53Z) - Document Structure aware Relational Graph Convolutional Networks for
Ontology Population [1.076210145983805]
文書コーパスにおける概念間の存在論的関係の学習における文書構造の役割を考察する。
超音速発見と説明可能性から着想を得た本手法は,RCNモデルのスタンドアロンモデルよりも約15ポイント精度が高い。
論文 参考訳(メタデータ) (2021-04-27T02:50:39Z) - A Survey on Complex Question Answering over Knowledge Base: Recent
Advances and Challenges [71.4531144086568]
知識ベース(KB)に対する質問回答(QA)は、自然言語の質問に自動的に答えることを目的としている。
研究者は、よりKBのトリプルと制約推論を必要とする単純な質問から複雑な質問へと注意を移した。
論文 参考訳(メタデータ) (2020-07-26T07:13:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。