論文の概要: Learning the parameters of a differential equation from its trajectory
via the adjoint equation
- arxiv url: http://arxiv.org/abs/2206.09054v1
- Date: Fri, 17 Jun 2022 23:59:09 GMT
- ステータス: 処理完了
- システム内更新日: 2022-06-22 20:01:14.220150
- Title: Learning the parameters of a differential equation from its trajectory
via the adjoint equation
- Title(参考訳): 随伴方程式を通して微分方程式の軌道からパラメータを学習する
- Authors: Imre Fekete, Andr\'as Moln\'ar, P\'eter L. Simon
- Abstract要約: 本論文は,機械学習と微分方程式理論の関係強化に寄与する。
パラメータを適合させる逆問題と、ある測定値に対する微分方程式の初期条件は重要な問題である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The paper contributes to strengthening the relation between machine learning
and the theory of differential equations. In this context, the inverse problem
of fitting the parameters, and the initial condition of a differential equation
to some measurements constitutes a key issue. The paper explores an abstraction
that can be used to construct a family of loss functions with the aim of
fitting the solution of an initial value problem to a set of discrete or
continuous measurements. It is shown, that an extension of the adjoint equation
can be used to derive the gradient of the loss function as a continuous
analogue of backpropagation in machine learning. Numerical evidence is
presented that under reasonably controlled circumstances the gradients obtained
this way can be used in a gradient descent to fit the solution of an initial
value problem to a set of continuous noisy measurements, and a set of discrete
noisy measurements that are recorded at uncertain times.
- Abstract(参考訳): 本論文は、機械学習と微分方程式の理論との関係の強化に寄与する。
この文脈では、パラメータを適合させる逆問題と、ある測定値に対する微分方程式の初期条件が重要な問題となっている。
本稿では,初期値問題の解を離散的あるいは連続的な測定値の集合に適合させる目的で,損失関数の族を構成するのに使用できる抽象化について検討する。
共役方程式の拡張は、機械学習におけるバックプロパゲーションの連続的類似物としての損失関数の勾配を導出するために利用できることを示した。
合理的に制御された状況下では、この方法で得られた勾配は、初期値問題の解を連続的なノイズ測定の集合と不確定な時間に記録される離散的ノイズ測定の集合に適合させるために、勾配降下に使用できることが示される。
関連論文リスト
- A Physics-Informed Machine Learning Approach for Solving Distributed Order Fractional Differential Equations [0.0]
本稿では,物理インフォームド機械学習フレームワークを用いた分散次分数差分方程式の解法を提案する。
分散階関数式をSVRフレームワークに組み込むことで、物理法則を直接学習プロセスに組み込む。
提案手法の有効性は,Caputo-based distributed-order fractional differential equationsの数値実験を通じて検証した。
論文 参考訳(メタデータ) (2024-09-05T13:20:10Z) - Towards true discovery of the differential equations [57.089645396998506]
微分方程式探索は、解釈可能なモデルを開発するために使用される機械学習サブフィールドである。
本稿では,専門家の入力を伴わない独立方程式発見のための前提条件とツールについて検討する。
論文 参考訳(メタデータ) (2023-08-09T12:03:12Z) - About optimal loss function for training physics-informed neural
networks under respecting causality [0.0]
物理インフォームドニューラルネットワーク(PINN)手法に修正問題を用いることの利点は、微分方程式に関連付けられた単一の項の形で損失関数を表現できることである。
提案手法の精度を実証し,多くの問題に対して数値実験を行った。
論文 参考訳(メタデータ) (2023-04-05T08:10:40Z) - Learning Discretized Neural Networks under Ricci Flow [51.36292559262042]
低精度重みとアクティベーションからなる離散ニューラルネットワーク(DNN)について検討する。
DNNは、訓練中に微分不可能な離散関数のために無限あるいはゼロの勾配に悩まされる。
論文 参考訳(メタデータ) (2023-02-07T10:51:53Z) - WeakIdent: Weak formulation for Identifying Differential Equations using
Narrow-fit and Trimming [5.027714423258538]
弱い定式化を用いて微分方程式を復元する汎用的で堅牢な枠組みを提案する。
各空間レベルに対して、Subspace Pursuitは、大きな辞書から最初のサポートセットを見つけるために使用される。
提案手法は、係数の頑健な回復と、最大で100%のノイズ-信号比を処理できる顕著なデノナイジング効果を与える。
論文 参考訳(メタデータ) (2022-11-06T14:33:22Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum
Cocoercive Variational Inequalities [137.6408511310322]
有限サムコヒーレンシブ変分不等式の問題を考える。
強い単調な問題に対しては、この方法を用いて解への線形収束を達成することができる。
論文 参考訳(メタデータ) (2022-10-12T08:04:48Z) - Identifiability and Asymptotics in Learning Homogeneous Linear ODE Systems from Discrete Observations [114.17826109037048]
通常の微分方程式(ODE)は、機械学習において最近多くの注目を集めている。
理論的な側面、例えば、統計的推定の識別可能性と特性は、いまだに不明である。
本稿では,1つの軌道からサンプリングされた等間隔の誤差のない観測結果から,同次線形ODE系の同定可能性について十分な条件を導出する。
論文 参考訳(メタデータ) (2022-10-12T06:46:38Z) - Learning via nonlinear conjugate gradients and depth-varying neural ODEs [5.565364597145568]
ニューラル常微分方程式(NODE)における深度可変パラメータの教師付き再構成の逆問題について考察する。
提案したパラメータ再構成は,コスト関数の最小化による一般一階微分方程式に対して行われる。
感度問題は、トレーニングされたパラメータの摂動下でのネットワーク出力の変化を推定することができる。
論文 参考訳(メタデータ) (2022-02-11T17:00:48Z) - The Connection between Discrete- and Continuous-Time Descriptions of
Gaussian Continuous Processes [60.35125735474386]
我々は、一貫した推定子をもたらす離散化が粗粒化下での不変性を持つことを示す。
この結果は、導関数再構成のための微分スキームと局所時間推論アプローチの組み合わせが、2次または高次微分方程式の時系列解析に役立たない理由を説明する。
論文 参考訳(メタデータ) (2021-01-16T17:11:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。