論文の概要: About optimal loss function for training physics-informed neural
networks under respecting causality
- arxiv url: http://arxiv.org/abs/2304.02282v1
- Date: Wed, 5 Apr 2023 08:10:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-06 13:11:22.405174
- Title: About optimal loss function for training physics-informed neural
networks under respecting causality
- Title(参考訳): 因果関係を考慮した物理インフォームドニューラルネットワークの最適損失関数について
- Authors: Vasiliy A. Es'kin, Danil V. Davydov, Ekaterina D. Egorova, Alexey O.
Malkhanov, Mikhail A. Akhukov, Mikhail E. Smorkalov
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)手法に修正問題を用いることの利点は、微分方程式に関連付けられた単一の項の形で損失関数を表現できることである。
提案手法の精度を実証し,多くの問題に対して数値実験を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A method is presented that allows to reduce a problem described by
differential equations with initial and boundary conditions to the problem
described only by differential equations. The advantage of using the modified
problem for physics-informed neural networks (PINNs) methodology is that it
becomes possible to represent the loss function in the form of a single term
associated with differential equations, thus eliminating the need to tune the
scaling coefficients for the terms related to boundary and initial conditions.
The weighted loss functions respecting causality were modified and new weighted
loss functions based on generalized functions are derived. Numerical
experiments have been carried out for a number of problems, demonstrating the
accuracy of the proposed methods.
- Abstract(参考訳): 微分方程式にのみ記述される問題に対して初期条件と境界条件を持つ微分方程式によって記述される問題を還元する手法を提案する。
物理インフォームドニューラルネットワーク(PINN)方法論の修正問題を利用する利点は、微分方程式に関連する単一の項の形で損失関数を表現できることであり、したがって境界条件や初期条件に関連する項のスケーリング係数を調整する必要がなくなることである。
因果関係に関する重み付き損失関数を修正し、一般化関数に基づく新たな重み付き損失関数を導出した。
提案手法の精度を実証し,多くの問題に対して数値実験を行った。
関連論文リスト
- Transformed Physics-Informed Neural Networks for The Convection-Diffusion Equation [0.0]
特異な摂動問題には、数値的に解くのが難しい急な境界層を持つ解が存在する。
有限差分法のような従来の数値法は、安定かつ正確な解を得るために洗練されたメッシュを必要とする。
我々は,物理インフォームドニューラルネットワーク(PINN)を用いて特異摂動問題の数値解を生成することを検討する。
論文 参考訳(メタデータ) (2024-09-12T00:24:21Z) - A Physics-driven GraphSAGE Method for Physical Process Simulations
Described by Partial Differential Equations [2.1217718037013635]
物理駆動型グラフSAGE法は不規則なPDEによって支配される問題を解くために提案される。
距離関連エッジ機能と特徴マッピング戦略は、トレーニングと収束を支援するために考案された。
ガウス特異性ランダム場源によりパラメータ化された熱伝導問題に対するロバストPDEサロゲートモデルの構築に成功した。
論文 参考訳(メタデータ) (2024-03-13T14:25:15Z) - On the Dynamics Under the Unhinged Loss and Beyond [104.49565602940699]
我々は、閉形式力学を解析するための数学的機会を提供する、簡潔な損失関数であるアンヒンジド・ロスを導入する。
アンヒンジされた損失は、時間変化学習率や特徴正規化など、より実践的なテクニックを検討することができる。
論文 参考訳(メタデータ) (2023-12-13T02:11:07Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Certified machine learning: Rigorous a posteriori error bounds for PDE
defined PINNs [0.0]
本稿では,物理インフォームドニューラルネットワークの予測誤差に関する厳密な上限を示す。
これを輸送方程式、熱方程式、ナビエ・ストークス方程式、クライン・ゴルドン方程式の4つの問題に適用する。
論文 参考訳(メタデータ) (2022-10-07T09:49:18Z) - Stochastic Scaling in Loss Functions for Physics-Informed Neural
Networks [0.0]
訓練されたニューラルネットワークは普遍関数近似器として機能し、新しい方法で微分方程式を数値的に解くことができる。
従来の損失関数とトレーニングパラメータのバリエーションは、ニューラルネットワーク支援ソリューションをより効率的にする上で有望であることを示している。
論文 参考訳(メタデータ) (2022-08-07T17:12:39Z) - Enhanced Physics-Informed Neural Networks with Augmented Lagrangian
Relaxation Method (AL-PINNs) [1.7403133838762446]
物理インフォームドニューラルネットワーク(PINN)は非線形偏微分方程式(PDE)の解の強力な近似器である
PINN(AL-PINN)のための拡張ラグランジアン緩和法を提案する。
AL-PINNは、最先端の適応的損失分散アルゴリズムと比較して、相対誤差がはるかに小さいことを様々な数値実験で示している。
論文 参考訳(メタデータ) (2022-04-29T08:33:11Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physics informed neural networks for continuum micromechanics [68.8204255655161]
近年,応用数学や工学における多種多様な問題に対して,物理情報ニューラルネットワークの適用が成功している。
グローバルな近似のため、物理情報ニューラルネットワークは、最適化によって局所的な効果と強い非線形解を表示するのに困難である。
実世界の$mu$CT-Scansから得られた不均一構造における非線形応力, 変位, エネルギー場を, 正確に解くことができる。
論文 参考訳(メタデータ) (2021-10-14T14:05:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。