論文の概要: A Physics-Informed Machine Learning Approach for Solving Distributed Order Fractional Differential Equations
- arxiv url: http://arxiv.org/abs/2409.03507v1
- Date: Thu, 5 Sep 2024 13:20:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-06 20:40:17.869269
- Title: A Physics-Informed Machine Learning Approach for Solving Distributed Order Fractional Differential Equations
- Title(参考訳): 物理インフォームド機械学習による分散次数差分方程式の解法
- Authors: Alireza Afzal Aghaei,
- Abstract要約: 本稿では,物理インフォームド機械学習フレームワークを用いた分散次分数差分方程式の解法を提案する。
分散階関数式をSVRフレームワークに組み込むことで、物理法則を直接学習プロセスに組み込む。
提案手法の有効性は,Caputo-based distributed-order fractional differential equationsの数値実験を通じて検証した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper introduces a novel methodology for solving distributed-order fractional differential equations using a physics-informed machine learning framework. The core of this approach involves extending the support vector regression (SVR) algorithm to approximate the unknown solutions of the governing equations during the training phase. By embedding the distributed-order functional equation into the SVR framework, we incorporate physical laws directly into the learning process. To further enhance computational efficiency, Gegenbauer orthogonal polynomials are employed as the kernel function, capitalizing on their fractional differentiation properties to streamline the problem formulation. Finally, the resulting optimization problem of SVR is addressed either as a quadratic programming problem or as a positive definite system in its dual form. The effectiveness of the proposed approach is validated through a series of numerical experiments on Caputo-based distributed-order fractional differential equations, encompassing both ordinary and partial derivatives.
- Abstract(参考訳): 本稿では,物理インフォームド機械学習フレームワークを用いた分散次分数差分方程式の解法を提案する。
このアプローチの中核は、トレーニングフェーズにおける支配方程式の未知の解を近似するために、サポートベクトル回帰(SVR)アルゴリズムを拡張することである。
分散階関数式をSVRフレームワークに組み込むことで、物理法則を直接学習プロセスに組み込む。
計算効率をさらに高めるために、ゲゲンバウアー直交多項式がカーネル関数として使われ、その分数微分特性を利用して問題定式化を効率化する。
最後に、SVRの結果として生じる最適化問題は、二次プログラミング問題または正定値システムとしてその双対形式に対処する。
提案手法の有効性は, 通常の偏微分と偏微分の両方を含む, カプトー型分散次分数差分方程式に関する一連の数値実験によって検証される。
関連論文リスト
- Learning Controlled Stochastic Differential Equations [61.82896036131116]
本研究では,非一様拡散を伴う連続多次元非線形微分方程式のドリフト係数と拡散係数の両方を推定する新しい手法を提案する。
我々は、(L2)、(Linfty)の有限サンプル境界や、係数の正則性に適応する学習率を持つリスクメトリクスを含む、強力な理論的保証を提供する。
当社のメソッドはオープンソースPythonライブラリとして利用可能です。
論文 参考訳(メタデータ) (2024-11-04T11:09:58Z) - PINNIES: An Efficient Physics-Informed Neural Network Framework to Integral Operator Problems [0.0]
本稿では,物理インフォームド深層学習フレームワークにおける積分演算子近似のための効率的なテンソルベクトル積法を提案する。
我々は、この方法がフレドホルムとボルテラ積分作用素の両方に適用可能であることを実証する。
また,カプトー微分を効率的に計算する高速行列ベクトル積アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-09-03T13:43:58Z) - DOF: Accelerating High-order Differential Operators with Forward
Propagation [40.71528485918067]
一般の2階微分演算子を精度を損なわずに計算するための効率的なフレームワークである差分演算子(DOF)を提案する。
我々は、効率が2倍改善され、どんなアーキテクチャでもメモリ消費が削減されたことを実証する。
実験結果から,本手法は従来の自動微分法(AutoDiff)よりも優れ,構造が2倍,空間が20倍近く向上していることがわかった。
論文 参考訳(メタデータ) (2024-02-15T05:59:21Z) - An Orthogonal Polynomial Kernel-Based Machine Learning Model for
Differential-Algebraic Equations [0.24578723416255746]
本稿では,LS-SVR機械学習モデル,重み付き残差法,レジェンダ間の接続を確立することにより,一般DAEを演算子形式で解く新しい手法を提案する。
提案手法の有効性を評価するため,非線形システム,分数次微分,積分微分,部分DAEなど,様々なDAEシナリオを考慮したシミュレーションを行った。
論文 参考訳(メタデータ) (2024-01-25T18:37:17Z) - Accelerating Fractional PINNs using Operational Matrices of Derivative [0.24578723416255746]
本稿では,分数次物理学情報ニューラルネットワーク(fPINN)の学習を高速化する新しい演算行列法を提案する。
提案手法では、カプトー型分数微分問題において、0alpha1$での分数導関数の高速な計算を容易にする。
提案手法の有効性は,遅延微分方程式 (DDE) や微分代数方程式 (DAE) など,様々な微分方程式にまたがって検証される。
論文 参考訳(メタデータ) (2024-01-25T11:00:19Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - Symbolic Recovery of Differential Equations: The Identifiability Problem [52.158782751264205]
微分方程式の記号的回復は、支配方程式の導出を自動化する野心的な試みである。
関数が対応する微分方程式を一意に決定するために必要な条件と十分な条件の両方を提供する。
この結果を用いて、関数が微分方程式を一意に解くかどうかを判定する数値アルゴリズムを考案する。
論文 参考訳(メタデータ) (2022-10-15T17:32:49Z) - Semi-supervised Learning of Partial Differential Operators and Dynamical
Flows [68.77595310155365]
本稿では,超ネットワーク解法とフーリエニューラル演算子アーキテクチャを組み合わせた新しい手法を提案する。
本手法は, 1次元, 2次元, 3次元の非線形流体を含む様々な時間発展PDEを用いて実験を行った。
その結果、新しい手法は、監督点の時点における学習精度を向上し、任意の中間時間にその解を補間できることを示した。
論文 参考訳(メタデータ) (2022-07-28T19:59:14Z) - Numerical Solution of Stiff Ordinary Differential Equations with Random
Projection Neural Networks [0.0]
正規微分方程式(ODE)の解に対する乱射影ニューラルネットワーク(RPNN)に基づく数値スキームを提案する。
提案手法は剛性の影響を受けずに高い数値近似精度を示し,textttode45 と textttode15s の関数よりも優れていた。
論文 参考訳(メタデータ) (2021-08-03T15:49:17Z) - DiffPD: Differentiable Projective Dynamics with Contact [65.88720481593118]
DiffPDは、暗黙の時間積分を持つ効率的な微分可能なソフトボディシミュレータである。
我々はDiffPDの性能を評価し,様々な応用における標準ニュートン法と比較して4~19倍のスピードアップを観測した。
論文 参考訳(メタデータ) (2021-01-15T00:13:33Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。