論文の概要: Learning differentiable solvers for systems with hard constraints
- arxiv url: http://arxiv.org/abs/2207.08675v1
- Date: Mon, 18 Jul 2022 15:11:43 GMT
- ステータス: 処理完了
- システム内更新日: 2022-07-19 19:42:49.020605
- Title: Learning differentiable solvers for systems with hard constraints
- Title(参考訳): 制約付きシステムの微分可能解法学習
- Authors: Geoffrey N\'egiar, Michael W. Mahoney, Aditi S. Krishnapriyan
- Abstract要約: ニューラルネットワーク(NN)によって定義される関数に対する線形偏微分方程式(PDE)制約を強制する実用的な方法を提案する。
その結果、NNアーキテクチャに直接ハード制約を組み込むことで、制約のない目的のトレーニングに比べてテストエラーがはるかに少ないことがわかった。
- 参考スコア(独自算出の注目度): 48.54197776363251
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a practical method to enforce linear partial differential
equation (PDE) constraints for functions defined by neural networks (NNs), up
to a desired tolerance. By combining methods in differentiable physics and
applications of the implicit function theorem to NN models, we develop a
differentiable PDE-constrained NN layer. During training, our model learns a
family of functions, each of which defines a mapping from PDE parameters to PDE
solutions. At inference time, the model finds an optimal linear combination of
the functions in the learned family by solving a PDE-constrained optimization
problem. Our method provides continuous solutions over the domain of interest
that exactly satisfy desired physical constraints. Our results show that
incorporating hard constraints directly into the NN architecture achieves much
lower test error, compared to training on an unconstrained objective.
- Abstract(参考訳): 本稿では,ニューラルネットワーク(NN)が定義する関数に対する線形偏微分方程式(PDE)制約を,所望の許容範囲まで適用するための実用的な手法を提案する。
微分可能物理学の手法と暗黙関数定理のNNモデルへの応用を組み合わせることで、微分可能PDE制約NN層を開発する。
トレーニング中、我々のモデルは関数群を学習し、それぞれがPDEパラメータからPDEソリューションへのマッピングを定義する。
推論時には、PDE制約の最適化問題を解くことにより、学習家族における関数の最適線形結合を求める。
提案手法は,所望の物理的制約を正確に満たす関心領域に対する連続解を提供する。
その結果、NNアーキテクチャに直接ハード制約を組み込むことで、制約のない目的のトレーニングに比べてテストエラーがはるかに少ないことがわかった。
関連論文リスト
- Meta-PDE: Learning to Solve PDEs Quickly Without a Mesh [24.572840023107574]
偏微分方程式(PDE)は、しばしば計算的に解くのが難しい。
本稿では,関連するPDEの分布から,問題の迅速な解法を学習するメタラーニング手法を提案する。
論文 参考訳(メタデータ) (2022-11-03T06:17:52Z) - LordNet: Learning to Solve Parametric Partial Differential Equations
without Simulated Data [63.55861160124684]
本稿では,離散化されたPDEによって構築された平均2乗残差(MSR)損失から,ニューラルネットワークが直接物理を学習する一般データ自由パラダイムを提案する。
具体的には,低ランク分解ネットワーク(LordNet)を提案する。
Poisson方程式とNavier-Stokes方程式を解く実験は、MSR損失による物理的制約がニューラルネットワークの精度と能力を向上させることを実証している。
論文 参考訳(メタデータ) (2022-06-19T14:41:08Z) - Mitigating Learning Complexity in Physics and Equality Constrained
Artificial Neural Networks [0.9137554315375919]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
PINNでは、利害関係のPDEの残留形態とその境界条件は、軟罰として複合目的関数にまとめられる。
本稿では,この目的関数を定式化する方法が,異なる種類のPDEに適用した場合のPINNアプローチにおける厳しい制約の源であることを示す。
論文 参考訳(メタデータ) (2022-06-19T04:12:01Z) - Physics-constrained Unsupervised Learning of Partial Differential
Equations using Meshes [1.066048003460524]
グラフニューラルネットワークは、不規則にメッシュ化されたオブジェクトを正確に表現し、それらのダイナミクスを学ぶことを約束する。
本研究では、メッシュをグラフとして自然に表現し、グラフネットワークを用いてそれらを処理し、物理に基づく損失を定式化し、偏微分方程式(PDE)の教師なし学習フレームワークを提供する。
本フレームワークは, ソフトボディ変形のモデルベース制御など, PDEソルバをインタラクティブな設定に適用する。
論文 参考訳(メタデータ) (2022-03-30T19:22:56Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Message Passing Neural PDE Solvers [60.77761603258397]
偏微分方程式(PDE)の数値解は困難であり、これまでの1世紀にわたる研究に繋がった。
近年、ニューラルネットワークと数値のハイブリッド・ソルバの構築が推進されており、これは現代のエンドツーエンドの学習システムへのトレンドを後押ししている。
この研究では、すべてのコンポーネントがニューラルメッセージパッシングに基づいて、これらの特性を満たす解決器を構築します。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Physics and Equality Constrained Artificial Neural Networks: Application
to Partial Differential Equations [1.370633147306388]
偏微分方程式(PDE)の解を学ぶために物理インフォームドニューラルネットワーク(PINN)が提案されている。
本稿では,この目的関数の定式化方法が,PINNアプローチにおける厳密な制約の源であることを示す。
本稿では,逆問題と前方問題の両方に対処可能な多目的フレームワークを提案する。
論文 参考訳(メタデータ) (2021-09-30T05:55:35Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z) - Bayesian neural networks for weak solution of PDEs with uncertainty
quantification [3.4773470589069473]
ラベルなしでPDEを解くために、新しい物理制約ニューラルネットワーク(NN)アプローチが提案されている。
我々は,PDEの離散化残差に基づくNNの損失関数を,効率的で畳み込み演算子に基づくベクトル化実装により記述する。
本研究では, 定常拡散, 線形弾性, 非線形弾性に応用し, 提案フレームワークの性能と性能を示す。
論文 参考訳(メタデータ) (2021-01-13T04:57:51Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。