論文の概要: Quantum Annealing for Neural Network optimization problems: a new
approach via Tensor Network simulations
- arxiv url: http://arxiv.org/abs/2208.14468v2
- Date: Sat, 17 Sep 2022 14:29:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-28 11:32:39.503666
- Title: Quantum Annealing for Neural Network optimization problems: a new
approach via Tensor Network simulations
- Title(参考訳): ニューラルネットワーク最適化問題に対する量子アニーリング-テンソルネットワークシミュレーションによる新しいアプローチ
- Authors: Guglielmo Lami, Pietro Torta, Giuseppe E. Santoro, Mario Collura
- Abstract要約: 量子アニーリング(QA)は、量子最適化の最も有望なフレームワークの1つである。
本稿では,QAの断熱時間進化を適切なネットワークとして効率的に表現できることを示す。
マトリックス製品状態(MPS)として表現された最適化状態が量子回路に再キャスト可能であることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Annealing (QA) is one of the most promising frameworks for quantum
optimization. Here, we focus on the problem of minimizing complex classical
cost functions associated with prototypical discrete neural networks,
specifically the paradigmatic Hopfield model and binary perceptron. We show
that the adiabatic time evolution of QA can be efficiently represented as a
suitable Tensor Network. This representation allows for simple classical
simulations, well-beyond small sizes amenable to exact diagonalization
techniques. We show that the optimized state, expressed as a Matrix Product
State (MPS), can be recast into a Quantum Circuit, whose depth scales only
linearly with the system size and quadratically with the MPS bond dimension.
This may represent a valuable starting point allowing for further circuit
optimization on near-term quantum devices.
- Abstract(参考訳): 量子アニーリング(QA)は、量子最適化の最も有望なフレームワークの1つである。
本稿では、原型離散ニューラルネットワーク、特にパラダイム的ホップフィールドモデルとバイナリパーセプトロンに関連する複雑な古典的コスト関数の最小化に焦点をあてる。
本稿では,QAの断熱時間進化を適切なテンソルネットワークとして効率的に表現できることを示す。
この表現は、単純な古典的なシミュレーションを可能にし、正確な対角化技術に十分対応できる小さなサイズである。
行列積状態 (mps) として表される最適化された状態は, 深さが系サイズにのみ線形にスケールし, mps結合次元に2次的にスケールする量子回路に再キャストできることを示した。
これは、短期量子デバイス上でのさらなる回路最適化を可能にする貴重な出発点となるかもしれない。
関連論文リスト
- NN-AE-VQE: Neural network parameter prediction on autoencoded variational quantum eigensolvers [1.7400502482492273]
近年、量子コンピューティングの分野は大幅に成熟している。
NN-AE-VQEというニューラルネットワークを用いた自動符号化VQEを提案する。
我々はこれらの手法を、化学的精度を達成するために、$H$分子上で実証する。
論文 参考訳(メタデータ) (2024-11-23T23:09:22Z) - Large-scale quantum annealing simulation with tensor networks and belief propagation [0.0]
3つの正則グラフに対する量子アニールは1000量子ビットと5000000量子ビットゲートのスケールでも古典的にシミュレートできることを示す。
非退化インスタンスの場合、一意解は最後の縮小された単一量子状態から読み出すことができる。
MaxCutのような退化問題に対して、グラフテンソル-ネットワーク状態に対する近似的な測定シミュレーションアルゴリズムを導入する。
論文 参考訳(メタデータ) (2024-09-18T18:00:08Z) - Enhancing Scalability of Quantum Eigenvalue Transformation of Unitary Matrices for Ground State Preparation through Adaptive Finer Filtering [0.13108652488669736]
ハミルトニアンシミュレーション(英: Hamiltonian Simulation)は、量子コンピュータが古典的計算を上回る可能性を持つ領域である。
このような量子アルゴリズムの主な課題の1つは、システムサイズをアップスケーリングすることである。
本稿では, 固有空間フィルタリングのスケーラビリティを, 与えられたハミルトニアンの基底状態の準備のために向上させるアプローチを提案する。
論文 参考訳(メタデータ) (2024-01-17T09:52:24Z) - Simulating non-unitary dynamics using quantum signal processing with
unitary block encoding [0.0]
我々は、資源フルーガル量子信号処理の最近の進歩に適応し、量子コンピュータ上での非一元的想像時間進化を探求する。
所望の仮想時間発展状態の回路深度を最適化する手法と,その実現可能性を試行する。
非単体力学のQET-Uは柔軟で直感的で使いやすく、シミュレーションタスクにおける量子優位性を実現する方法を提案する。
論文 参考訳(メタデータ) (2023-03-10T19:00:33Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
適応微分組立問題集合型アンザッツ変分固有解法(ADAPTVQE)における自己一貫したフィールドアプローチ(SCF)を提案する。
このフレームワークは、短期量子コンピュータ上の化学系の効率的な量子シミュレーションに使用される。
論文 参考訳(メタデータ) (2022-12-21T23:15:17Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
量子コンピューティングの標準的なアプローチは、古典的にシミュレート可能なフォールトトレラントな演算セットを促進するという考え方に基づいている。
量子回路の古典的準確率シミュレーションをどのように促進するかを示す。
論文 参考訳(メタデータ) (2021-03-12T20:58:41Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
線形および非線形の層をユニタリ量子ゲートとして表現する方法を示し、量子モデルの基本的な励起を粒子として解釈する。
ニューラルネットワークの研究のための新しい視点と技術を開くことに加えて、量子定式化は光量子コンピューティングに適している。
論文 参考訳(メタデータ) (2021-03-08T17:24:29Z) - Autoregressive Transformer Neural Network for Simulating Open Quantum Systems via a Probabilistic Formulation [5.668795025564699]
オープン量子システムのダイナミクスに対処するためのアプローチを提案する。
自己回帰変換ニューラルネットワークを用いて量子状態をコンパクトに表現する。
効率的なアルゴリズムは、リウヴィリア超作用素の力学をシミュレートするために開発された。
論文 参考訳(メタデータ) (2020-09-11T18:00:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。