論文の概要: EvolvingBehavior: Towards Co-Creative Evolution of Behavior Trees for
Game NPCs
- arxiv url: http://arxiv.org/abs/2209.01020v1
- Date: Thu, 1 Sep 2022 17:44:11 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-05 11:55:38.361717
- Title: EvolvingBehavior: Towards Co-Creative Evolution of Behavior Trees for
Game NPCs
- Title(参考訳): Evolving Behavior:ゲームNPCのための行動ツリーの協調的進化を目指して
- Authors: Nathan Partlan, Luis Soto, Jim Howe, Sarthak Shrivastava, Magy Seif
El-Nasr, Stacy Marsella
- Abstract要約: 提案するEvolvingBehaviorは,Unreal Engine 4の動作木を進化させる遺伝的プログラミングツールである。
最初の評価では、3Dサバイバルゲームにおいて、進化した振る舞いを、研究者が設計した手作りの木とランダムに成長した木と比較した。
- 参考スコア(独自算出の注目度): 10.278496287402938
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: To assist game developers in crafting game NPCs, we present EvolvingBehavior,
a novel tool for genetic programming to evolve behavior trees in Unreal Engine
4. In an initial evaluation, we compare evolved behavior to hand-crafted trees
designed by our researchers, and to randomly-grown trees, in a 3D survival
game. We find that EvolvingBehavior is capable of producing behavior
approaching the designer's goals in this context. Finally, we discuss
implications and future avenues of exploration for co-creative game AI design
tools, as well as challenges and difficulties in behavior tree evolution.
- Abstract(参考訳): ゲーム開発者がゲームnpcを作成するのを支援するために、unreal engine 4の振る舞いツリーを進化させる遺伝的プログラミングのための新しいツールであるevolutioningbehaviorを提案する。
最初の評価では、3Dサバイバルゲームにおいて、進化した振る舞いを、研究者が設計した手作りの木とランダムに成長した木と比較した。
EvolvingBehaviorは、このコンテキストでデザイナの目標に近づく行動を生成することができる。
最後に,共同創造型ゲームai設計ツールの意義と今後の展望,および行動木進化における課題と課題について考察する。
関連論文リスト
- Unbounded: A Generative Infinite Game of Character Life Simulation [68.37260000219479]
生成モデルを用いて,有限なハードコードシステムの境界を超越したゲームである生成無限ゲームの概念を導入する。
我々は、生成AIの最近の進歩を活用して、生成モデルに完全にカプセル化されたキャラクターライフシミュレーションゲームUnboundedを作成する。
論文 参考訳(メタデータ) (2024-10-24T17:59:31Z) - ChatPCG: Large Language Model-Driven Reward Design for Procedural Content Generation [3.333383360927007]
本稿では,大規模言語モデル(LLM)による報酬設計フレームワークChatPCGを提案する。
ゲーム専門知識と組み合わさった人間レベルの洞察を活用して、特定のゲーム機能に合わせた報酬を自動的に生成する。
ChatPCGは深層強化学習と統合されており、マルチプレイヤーゲームコンテンツ生成タスクの可能性を示している。
論文 参考訳(メタデータ) (2024-06-07T08:18:42Z) - Instruction-Driven Game Engines on Large Language Models [59.280666591243154]
IDGEプロジェクトは、大規模な言語モデルが自由形式のゲームルールに従うことを可能にすることで、ゲーム開発を民主化することを目的としている。
我々は、複雑なシナリオに対するモデルの露出を徐々に増大させるカリキュラム方式でIDGEを訓練する。
私たちの最初の進歩は、汎用的なカードゲームであるPoker用のIDGEを開発することです。
論文 参考訳(メタデータ) (2024-03-30T08:02:16Z) - Beyond Reality: The Pivotal Role of Generative AI in the Metaverse [98.1561456565877]
本稿では、生成型AI技術がMetaverseをどう形成しているかを包括的に調査する。
我々は、AI生成文字による会話インタフェースを強化しているChatGPTやGPT-3といったテキスト生成モデルの応用を探求する。
また、現実的な仮想オブジェクトを作成する上で、Point-EやLumimithmicのような3Dモデル生成技術の可能性についても検討する。
論文 参考訳(メタデータ) (2023-07-28T05:44:20Z) - Designing Mixed-Initiative Video Games [0.0]
スネークストーリー(Snake Story)は、ゲームのように「スネーク」をプレイすることで、プレイヤーがAI生成したテキストを選択してヘビのストーリーを書くことができる混合開始型ゲームである。
ゲームコンポーネントを設計したインタフェースで使用せずにプレイヤとAIのインタラクションのダイナミクスを調べるために,制御された実験を行った。
論文 参考訳(メタデータ) (2023-07-08T01:45:25Z) - Generative Personas That Behave and Experience Like Humans [3.611888922173257]
生成AIエージェントは、ルール、報酬、または人間のデモンストレーションとして表される特定の演奏行動の模倣を試みる。
我々は、行動手続き的ペルソナの概念をプレイヤー体験に適応させるよう拡張し、プレイヤーが人間のように行動し、経験できる生成エージェントを調べる。
その結果, 生成したエージェントは, 模倣を意図した人物のプレイスタイルや経験的反応を呈することが示唆された。
論文 参考訳(メタデータ) (2022-08-26T12:04:53Z) - Mimicking Playstyle by Adapting Parameterized Behavior Trees in RTS
Games [0.0]
行動木(BT)は、ゲームにおける人工知能(AI)の分野に影響を与えた。
BTは手作りのBTの複雑さをほとんど難なくし、エラーを起こしやすくした。
この分野の最近のトレンドはAIエージェントの自動作成に焦点を当てている。
本稿では,人間のゲームプレイを模倣し一般化する,AIエージェントの半自動構築手法を提案する。
論文 参考訳(メタデータ) (2021-11-23T20:36:28Z) - Human-Level Reinforcement Learning through Theory-Based Modeling,
Exploration, and Planning [27.593497502386143]
理論に基づく強化学習は、人間のような直感的な理論を使って環境を探索しモデル化する。
EMPAと呼ばれるゲームプレイエージェントのアプローチをインスタンス化する。
EMPAは90のAtariスタイルのビデオゲームで人間の学習効率と一致します。
論文 参考訳(メタデータ) (2021-07-27T01:38:13Z) - Teach me to play, gamer! Imitative learning in computer games via
linguistic description of complex phenomena and decision tree [55.41644538483948]
本稿では,複雑な現象の言語記述に基づく模倣による新しい機械学習モデルを提案する。
この手法は,ゲーム開発における知的エージェントの動作を設計し,実装するための優れた代替手段となる。
論文 参考訳(メタデータ) (2021-01-06T21:14:10Z) - Deep Policy Networks for NPC Behaviors that Adapt to Changing Design
Parameters in Roguelike Games [137.86426963572214]
例えばRoguelikesのようなターンベースの戦略ゲームは、Deep Reinforcement Learning(DRL)にユニークな課題を提示する。
複雑なカテゴリ状態空間をより適切に処理し、設計決定によって強制的に再訓練する必要性を緩和する2つのネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-12-07T08:47:25Z) - Learning to Simulate Dynamic Environments with GameGAN [109.25308647431952]
本稿では,エージェントが環境と対話するのを見ることでシミュレーターを学習することを目的とする。
ゲームGANは,学習中にスクリーンプレイやキーボード操作を取り入れることで,所望のゲームを視覚的に模倣することを学習する生成モデルである。
論文 参考訳(メタデータ) (2020-05-25T14:10:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。