論文の概要: A PDE approach for regret bounds under partial monitoring
- arxiv url: http://arxiv.org/abs/2209.01256v1
- Date: Fri, 2 Sep 2022 20:04:30 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-07 15:30:04.631458
- Title: A PDE approach for regret bounds under partial monitoring
- Title(参考訳): 部分モニタリングによる後悔境界に対するPDE法
- Authors: Erhan Bayraktar, Ibrahim Ekren, Xin Zhang
- Abstract要約: 予測器が部分的な情報を観測する学習問題について検討する。
本研究では, 適切なスムーズなサブ/スーパーサーボ解を求めることで, 後悔境界と効率的なアルゴリズムを得るという課題に取り組むことができることを示す。
- 参考スコア(独自算出の注目度): 8.277466108000203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we study a learning problem in which a forecaster only
observes partial information. By properly rescaling the problem, we
heuristically derive a limiting PDE on Wasserstein space which characterizes
the asymptotic behavior of the regret of the forecaster. Using a verification
type argument, we show that the problem of obtaining regret bounds and
efficient algorithms can be tackled by finding appropriate smooth
sub/supersolutions of this parabolic PDE.
- Abstract(参考訳): 本稿では,予測者が部分的情報のみを観測する学習問題について検討する。
問題を適切に再スケーリングすることにより、予測者の後悔の漸近的振る舞いを特徴づけるワーッサーシュタイン空間上の極限 PDE をヒューリスティックに導出する。
検証型引数を用いて,このパラボリックPDEのスムーズな部分/超解を求めることで,残差と効率的なアルゴリズムの獲得の問題に取り組むことができることを示す。
関連論文リスト
- Beyond Derivative Pathology of PINNs: Variable Splitting Strategy with Convergence Analysis [6.468495781611434]
物理インフォームドニューラルネットワーク(PINN)は、様々な問題において偏微分方程式(PDE)を解く効果的な方法として登場した。
本研究では,PINNが前提が無効であるという根本的な問題に直面していることを証明する。
本稿では,解の勾配を補助変数としてパラメータ化することで,この問題に対処するテキスト可変分割戦略を提案する。
論文 参考訳(メタデータ) (2024-09-30T15:20:10Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - On Convergence Analysis of Policy Iteration Algorithms for Entropy-Regularized Stochastic Control Problems [19.742628365680353]
一般の連続時間エントロピー正規化制御問題に対するポリシー反復アルゴリズム(PIA)の収束に関する問題点について検討する。
拡散が1次元の設定で制御を含む場合にも、我々のアプローチは拡張可能であるが、係数に余分な制約を伴わないことを示す。
論文 参考訳(メタデータ) (2024-06-16T14:31:26Z) - Unisolver: PDE-Conditional Transformers Are Universal PDE Solvers [55.0876373185983]
広範にPDEを解くことができるUniversal PDEソルバ(Unisolver)を提案する。
私たちの重要な発見は、PDEソリューションが基本的に一連のPDEコンポーネントの制御下にあることです。
Unisolverは3つの挑戦的な大規模ベンチマークにおいて、一貫した最先端の結果を達成する。
論文 参考訳(メタデータ) (2024-05-27T15:34:35Z) - Deep Equilibrium Based Neural Operators for Steady-State PDEs [100.88355782126098]
定常PDEに対する重み付けニューラルネットワークアーキテクチャの利点について検討する。
定常PDEの解を直接解くFNOアーキテクチャの深い平衡変種であるFNO-DEQを提案する。
論文 参考訳(メタデータ) (2023-11-30T22:34:57Z) - Weak-PDE-LEARN: A Weak Form Based Approach to Discovering PDEs From
Noisy, Limited Data [0.0]
Weak-PDE-LEARNは,非線形PDEを雑音から同定し,その解を限定的に測定する探索アルゴリズムである。
いくつかのベンチマークPDEを学習し,Weak-PDE-LEARNの有効性を示す。
論文 参考訳(メタデータ) (2023-09-09T06:45:15Z) - Neural Control of Parametric Solutions for High-dimensional Evolution
PDEs [6.649496716171139]
我々は進化偏微分方程式(PDE)の解演算子を近似する新しい計算フレームワークを開発する。
パラメータ空間における制御ベクトル場を学習することにより,PDEの解演算子を近似する。
これにより計算コストを大幅に削減し、任意の初期条件で進化PDEを解くことができる。
論文 参考訳(メタデータ) (2023-01-31T19:26:25Z) - A Dimensionality Reduction Method for Finding Least Favorable Priors
with a Focus on Bregman Divergence [108.28566246421742]
そこで本研究では,次元に明示的な有界な有限次元設定に最適化を移動させることができる次元削減法を開発した。
この問題を進展させるため、比較的大きな損失関数、すなわちブレグマンの発散によって引き起こされるベイズ的リスクに限定する。
論文 参考訳(メタデータ) (2022-02-23T16:22:28Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
本稿では,ニューラルPDEソルバサンプルの複雑性を改善することにより,この問題を部分的に緩和する手法を提案する。
PDEの文脈では、データ変換の完全なリストを定量的に導き出せることが分かりました。
神経性PDEソルバサンプルの複雑さを桁違いに改善するために、どのように容易に展開できるかを示す。
論文 参考訳(メタデータ) (2022-02-15T18:43:17Z) - A Fully Problem-Dependent Regret Lower Bound for Finite-Horizon MDPs [117.82903457289584]
有限水平マルコフ決定過程(MDPs)における新たな問題依存的下界を導出する。
我々の下界は一般の場合よりもかなり小さく、最小の作用ギャップでスケールしないことが示される。
この最後の結果($poly(H)$の条件で、$H$は地平線である)は、楽観的なアルゴリズムのポリシーギャップに基づいて、後悔の意を表すことによって達成可能であることを示す。
論文 参考訳(メタデータ) (2021-06-24T13:46:09Z) - Error bounds for PDE-regularized learning [0.6445605125467573]
偏微分方程式(PDE)による教師付き学習問題の正規化について考察する。
得られた近似の誤差境界を PDE 誤差項とデータ誤差項で導出する。
論文 参考訳(メタデータ) (2020-03-14T00:51:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。