論文の概要: Beyond Derivative Pathology of PINNs: Variable Splitting Strategy with Convergence Analysis
- arxiv url: http://arxiv.org/abs/2409.20383v1
- Date: Mon, 30 Sep 2024 15:20:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-02 07:46:26.876082
- Title: Beyond Derivative Pathology of PINNs: Variable Splitting Strategy with Convergence Analysis
- Title(参考訳): PINNの派生的病理を越えて:収束解析を用いた可変分割戦略
- Authors: Yesom Park, Changhoon Song, Myungjoo Kang,
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は、様々な問題において偏微分方程式(PDE)を解く効果的な方法として登場した。
本研究では,PINNが前提が無効であるという根本的な問題に直面していることを証明する。
本稿では,解の勾配を補助変数としてパラメータ化することで,この問題に対処するテキスト可変分割戦略を提案する。
- 参考スコア(独自算出の注目度): 6.468495781611434
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-informed neural networks (PINNs) have recently emerged as effective methods for solving partial differential equations (PDEs) in various problems. Substantial research focuses on the failure modes of PINNs due to their frequent inaccuracies in predictions. However, most are based on the premise that minimizing the loss function to zero causes the network to converge to a solution of the governing PDE. In this study, we prove that PINNs encounter a fundamental issue that the premise is invalid. We also reveal that this issue stems from the inability to regulate the behavior of the derivatives of the predicted solution. Inspired by the \textit{derivative pathology} of PINNs, we propose a \textit{variable splitting} strategy that addresses this issue by parameterizing the gradient of the solution as an auxiliary variable. We demonstrate that using the auxiliary variable eludes derivative pathology by enabling direct monitoring and regulation of the gradient of the predicted solution. Moreover, we prove that the proposed method guarantees convergence to a generalized solution for second-order linear PDEs, indicating its applicability to various problems.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、最近、様々な問題において偏微分方程式(PDE)を解く効果的な方法として登場した。
実質的な研究は、予測における頻繁な不正確さのため、PINNの障害モードに焦点を当てている。
しかしながら、損失関数をゼロに最小化することは、ネットワークを支配的PDEの解に収束させるという前提に基づいている。
本研究では,PINNが前提が無効であるという根本的な問題に直面していることを証明する。
また、この問題は、予測された解の微分の挙動を制御できないことに起因することも明らかにした。
PINNの「textit{deivative pathology}」に着想を得て,解の勾配を補助変数としてパラメータ化することでこの問題に対処する「textit{variable splitting}」戦略を提案する。
本研究では, 補助変数を用いることで, 予測された解の勾配の直接モニタリングと制御を可能にし, 微分病理学を解明できることを実証する。
さらに,提案手法は2次線形PDEに対する一般化解の収束を保証することを保証するとともに,様々な問題に適用可能であることを示す。
関連論文リスト
- A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Convergence analysis of unsupervised Legendre-Galerkin neural networks
for linear second-order elliptic PDEs [0.8594140167290099]
教師なしレジェンダ-ガレルキンニューラルネットワーク(ULGNet)の収束解析を行う。
ULGNetは偏微分方程式(PDE)を解くためのディープラーニングに基づく数値法である
論文 参考訳(メタデータ) (2022-11-16T13:31:03Z) - Investigating and Mitigating Failure Modes in Physics-informed Neural
Networks (PINNs) [0.0]
本稿では,物理インフォームドニューラルネットワーク(PINN)を用いた偏微分方程式(PDE)の解法について検討する。
PINNは客観的関数の正規化用語として物理を用いるが、この手法はデータの欠如や解の事前知識の欠如において実用的ではない。
以上の結果から,高次PDEは逆伝播勾配を汚染し,収束を阻害することが明らかとなった。
論文 参考訳(メタデータ) (2022-09-20T20:46:07Z) - Learning differentiable solvers for systems with hard constraints [48.54197776363251]
ニューラルネットワーク(NN)によって定義される関数に対する偏微分方程式(PDE)制約を強制する実践的手法を提案する。
我々は、任意のNNアーキテクチャに組み込むことができる微分可能なPDE制約層を開発した。
その結果、NNアーキテクチャに直接ハード制約を組み込むことで、制約のない目的のトレーニングに比べてテストエラーがはるかに少ないことがわかった。
論文 参考訳(メタデータ) (2022-07-18T15:11:43Z) - Physics-Aware Neural Networks for Boundary Layer Linear Problems [0.0]
物理インフォームドニューラルネットワーク(PINN)は、一般偏微分方程式(PDE)の解をニューラルネットワークの損失/コストの観点から何らかの形で加算することによって近似する。
本稿では,1つ以上の境界層が存在する線形PDEに対するPINNについて検討する。
論文 参考訳(メタデータ) (2022-07-15T21:15:06Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
我々は、PINNを正しい解に収束させるため、解区間を徐々に拡大することを提案する。
すべてのアンサンブルのメンバーは、観測されたデータの近くで同じ解に収束する。
提案手法は, 得られた解の精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:05:34Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
本稿では,ニューラルPDEソルバサンプルの複雑性を改善することにより,この問題を部分的に緩和する手法を提案する。
PDEの文脈では、データ変換の完全なリストを定量的に導き出せることが分かりました。
神経性PDEソルバサンプルの複雑さを桁違いに改善するために、どのように容易に展開できるかを示す。
論文 参考訳(メタデータ) (2022-02-15T18:43:17Z) - Spectrally Adapted Physics-Informed Neural Networks for Solving
Unbounded Domain Problems [0.0]
本研究では, (i) 物理インフォームドニューラルネットワーク (PINN) と (ii) 適応スペクトル法という2種類の数値手法を組み合わせる。
物理インフォームドニューラルネットワークによる高次数値スキームの実装により,PDEの解法を効率的に行うことができる。
次に,最近導入されたスペクトル手法の適応手法をPINNベースのPDEソルバに組み込んで,標準PINNで効率よく近似できない非有界領域問題の数値解を求める方法を示す。
論文 参考訳(メタデータ) (2022-02-06T05:25:22Z) - DiffNet: Neural Field Solutions of Parametric Partial Differential
Equations [30.80582606420882]
我々は、ニューラルネットワークをトレーニングし、PDEに対するソリューションのフィールド予測を生成するメッシュベースのアプローチを検討する。
パラメトリック楕円PDE上の有限要素法(FEM)に基づく重み付きガレルキン損失関数を用いる。
PDE に対する有限要素解に展開されたメッシュ収束解析に類似した,理論的に検証し,実験により考察する。
論文 参考訳(メタデータ) (2021-10-04T17:59:18Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。