論文の概要: Semi-analytic PINN methods for singularly perturbed boundary value
problems
- arxiv url: http://arxiv.org/abs/2208.09145v1
- Date: Fri, 19 Aug 2022 04:26:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-08-22 17:46:42.730039
- Title: Semi-analytic PINN methods for singularly perturbed boundary value
problems
- Title(参考訳): 特異摂動境界値問題に対する半解析的PINN法
- Authors: Gung-Min Gie, Youngjoon Hong, Chang-Yeol Jung
- Abstract要約: 本稿では,新しい半解析的物理情報ニューラルネットワーク(PINN)を提案し,特異な摂動境界値問題の解法を提案する。
PINNは、偏微分方程式の数値解を見つけるための有望な視点を提供する科学機械学習フレームワークである。
- 参考スコア(独自算出の注目度): 0.8594140167290099
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new semi-analytic physics informed neural network (PINN) to
solve singularly perturbed boundary value problems. The PINN is a scientific
machine learning framework that offers a promising perspective for finding
numerical solutions to partial differential equations. The PINNs have shown
impressive performance in solving various differential equations including
time-dependent and multi-dimensional equations involved in a complex geometry
of the domain. However, when considering stiff differential equations, neural
networks in general fail to capture the sharp transition of solutions, due to
the spectral bias. To resolve this issue, here we develop the semi-analytic
PINN methods, enriched by using the so-called corrector functions obtained from
the boundary layer analysis. Our new enriched PINNs accurately predict
numerical solutions to the singular perturbation problems. Numerical
experiments include various types of singularly perturbed linear and nonlinear
differential equations.
- Abstract(参考訳): 本稿では,特異な摂動境界値問題を解くために,新しい半解析物理学インフォームドニューラルネットワーク(pinn)を提案する。
PINNは、偏微分方程式の数値解を見つけるための有望な視点を提供する科学機械学習フレームワークである。
PINNは、領域の複雑な幾何学に関わる時間依存方程式や多次元方程式を含む様々な微分方程式の解法において顕著な性能を示した。
しかし、剛性微分方程式を考えると、一般にニューラルネットワークは、スペクトルバイアスのため、解の鋭い遷移を捉えることができない。
そこで本研究では,境界層解析から得られたいわゆる補正関数を用いて,半解析的PINN法を開発した。
新しい濃縮ピンは特異摂動問題に対する数値解を正確に予測する。
数値実験には、特異摂動線形および非線形微分方程式の様々な種類が含まれる。
関連論文リスト
- Transformed Physics-Informed Neural Networks for The Convection-Diffusion Equation [0.0]
特異な摂動問題には、数値的に解くのが難しい急な境界層を持つ解が存在する。
有限差分法のような従来の数値法は、安定かつ正確な解を得るために洗練されたメッシュを必要とする。
我々は,物理インフォームドニューラルネットワーク(PINN)を用いて特異摂動問題の数値解を生成することを検討する。
論文 参考訳(メタデータ) (2024-09-12T00:24:21Z) - General-Kindred Physics-Informed Neural Network to the Solutions of Singularly Perturbed Differential Equations [11.121415128908566]
我々は,Singular Perturbation Differential Equations(SPDE)の解法として,GKPINN(General-Kindred Physics-Informed Neural Network)を提案する。
この手法は, 境界層の事前知識を方程式から利用し, 境界層を近似するPINNを支援する新しいネットワークを確立する。
GKPINNは,確立したPINN法と比較して,2~4桁の誤差を2~4桁に削減し,大幅な性能向上を実現している。
論文 参考訳(メタデータ) (2024-08-27T02:03:22Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Physics-Aware Neural Networks for Boundary Layer Linear Problems [0.0]
物理インフォームドニューラルネットワーク(PINN)は、一般偏微分方程式(PDE)の解をニューラルネットワークの損失/コストの観点から何らかの形で加算することによって近似する。
本稿では,1つ以上の境界層が存在する線形PDEに対するPINNについて検討する。
論文 参考訳(メタデータ) (2022-07-15T21:15:06Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
我々は、PINNを正しい解に収束させるため、解区間を徐々に拡大することを提案する。
すべてのアンサンブルのメンバーは、観測されたデータの近くで同じ解に収束する。
提案手法は, 得られた解の精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:05:34Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Spectrally Adapted Physics-Informed Neural Networks for Solving
Unbounded Domain Problems [0.0]
本研究では, (i) 物理インフォームドニューラルネットワーク (PINN) と (ii) 適応スペクトル法という2種類の数値手法を組み合わせる。
物理インフォームドニューラルネットワークによる高次数値スキームの実装により,PDEの解法を効率的に行うことができる。
次に,最近導入されたスペクトル手法の適応手法をPINNベースのPDEソルバに組み込んで,標準PINNで効率よく近似できない非有界領域問題の数値解を求める方法を示す。
論文 参考訳(メタデータ) (2022-02-06T05:25:22Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable
domain decomposition approach for solving differential equations [20.277873724720987]
我々はFBPINN(Finite Basis PINNs)と呼ばれる微分方程式に関連する大きな問題を解くための新しいスケーラブルなアプローチを提案する。
FBPINNは古典的有限要素法に着想を得ており、微分方程式の解はコンパクトな支持を持つ基底関数の有限集合の和として表される。
FBPINNでは、ニューラルネットワークを使ってこれらの基底関数を学習する。
論文 参考訳(メタデータ) (2021-07-16T13:03:47Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。