論文の概要: Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains
- arxiv url: http://arxiv.org/abs/2302.04954v2
- Date: Wed, 6 Sep 2023 12:20:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 19:48:01.408843
- Title: Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains
- Title(参考訳): 熱機械結合系と異種領域に対する物理不定形ニューラルネットワークの混合定式化
- Authors: Ali Harandi, Ahmad Moeineddin, Michael Kaliske, Stefanie Reese, Shahed
Rezaei
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)は境界値問題を解決するための新しいツールである。
近年の研究では、多くの工学的問題に対して損失関数を設計する際には、一階微分を使い、強い形式と弱い形式の方程式を組み合わせることにより、はるかに精度が向上することが示されている。
本研究では,多物理問題,特に定常熱力学的に結合した方程式系を解くために混合定式化を適用することを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-informed neural networks (PINNs) are a new tool for solving boundary
value problems by defining loss functions of neural networks based on governing
equations, boundary conditions, and initial conditions. Recent investigations
have shown that when designing loss functions for many engineering problems,
using first-order derivatives and combining equations from both strong and weak
forms can lead to much better accuracy, especially when there are heterogeneity
and variable jumps in the domain. This new approach is called the mixed
formulation for PINNs, which takes ideas from the mixed finite element method.
In this method, the PDE is reformulated as a system of equations where the
primary unknowns are the fluxes or gradients of the solution, and the secondary
unknowns are the solution itself. In this work, we propose applying the mixed
formulation to solve multi-physical problems, specifically a stationary
thermo-mechanically coupled system of equations. Additionally, we discuss both
sequential and fully coupled unsupervised training and compare their accuracy
and computational cost. To improve the accuracy of the network, we incorporate
hard boundary constraints to ensure valid predictions. We then investigate how
different optimizers and architectures affect accuracy and efficiency. Finally,
we introduce a simple approach for parametric learning that is similar to
transfer learning. This approach combines data and physics to address the
limitations of PINNs regarding computational cost and improves the network's
ability to predict the response of the system for unseen cases. The outcomes of
this work will be useful for many other engineering applications where deep
learning is employed on multiple coupled systems of equations for fast and
reliable computations.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、ニューラルネットワークの損失関数を支配方程式、境界条件、初期条件に基づいて定義することで境界値問題を解決する新しいツールである。
近年の研究では、多くの工学的問題に対して損失関数を設計する場合、一階微分を使い、強形式と弱形式の両方の方程式を組み合わせることで、特に領域に異質性と可変ジャンプがある場合において、より精度が向上することが示されている。
この新しいアプローチは、混合有限要素法からアイデアを取り入れた、PINNの混合定式化と呼ばれる。
この方法では、PDEは、第一の未知が解のフラックスまたは勾配であり、第二の未知が解自身である方程式の体系として再構成される。
本研究では,混合定式化を多物理問題,特に定常熱力学的結合方程式系に応用することを提案する。
さらに,逐次訓練と完全結合型非教師付きトレーニングの両方について検討し,その精度と計算コストを比較した。
ネットワークの精度を向上させるために,境界制約を組み込んで有効な予測を行う。
次に、異なるオプティマイザとアーキテクチャが精度と効率に与える影響について調査する。
最後に,転送学習に類似したパラメトリック学習のための単純なアプローチを提案する。
このアプローチはデータと物理を組み合わせることで、計算コストに関するPINNの限界に対処し、予期せぬケースに対するシステムの応答を予測するネットワークの能力を改善する。
この研究の結果は、高速で信頼性の高い計算のための複数の結合方程式系にディープラーニングを適用できる他の多くの工学的応用に有用である。
関連論文リスト
- Physics-informed neural networks need a physicist to be accurate: the case of mass and heat transport in Fischer-Tropsch catalyst particles [0.3926357402982764]
物理インフォームドニューラルネットワーク(PINN)は、機械学習の迅速かつ自動化された能力と、理論物理学に根ざしたシミュレーションの精度と信頼性を融合して、影響力のある技術として登場した。
しかし、PINNの広範な採用は信頼性の問題、特に入力パラメータ範囲の極端ではまだ妨げられている。
ドメイン知識に基づくPINNアーキテクチャの変更を提案する。
論文 参考訳(メタデータ) (2024-11-15T08:55:31Z) - Solving Differential Equations with Constrained Learning [8.522558872274276]
(部分微分方程式)は自然現象を記述するための基本的な道具であり、その解は科学や工学において不可欠である。
有限要素法のような従来の手法は信頼性の高い解を提供するが、その精度は計算集約的な微細メッシュの使用と結びついている。
本稿では,SCL(Science-Constrained Learning)フレームワークを開発することにより,これらの課題に対処する。
PDEの(弱い)解を見つけることは、最悪の損失を伴う制約付き学習問題の解決と等価であることを示す。
論文 参考訳(メタデータ) (2024-10-30T08:20:39Z) - A Physics Informed Neural Network (PINN) Methodology for Coupled Moving Boundary PDEs [0.0]
物理インフォームドニューラルネットワーク(PINN)は、微分方程式(DE)を用いてモデル化された物理問題を解くのに役立つ新しいマルチタスク学習フレームワークである
本稿では、複数の制御パラメータ(エネルギーと種、および複数のインターフェースバランス方程式)を含む結合システムを解決するためのPINNベースのアプローチについて報告する。
論文 参考訳(メタデータ) (2024-09-17T06:00:18Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - A mixed formulation for physics-informed neural networks as a potential
solver for engineering problems in heterogeneous domains: comparison with
finite element method [0.0]
物理インフォームドニューラルネットワーク(PINN)は、与えられた境界値問題の解を見つけることができる。
工学的問題における既存のPINNの性能を高めるために,有限要素法(FEM)からいくつかのアイデアを取り入れた。
論文 参考訳(メタデータ) (2022-06-27T08:18:08Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Solving inverse-PDE problems with physics-aware neural networks [0.0]
偏微分方程式の逆問題における未知の場を見つけるための新しい枠組みを提案する。
我々は,ディープニューラルネットワークの高表現性を,既存の数値アルゴリズムの精度と信頼性とを融合した普遍関数推定器とする。
論文 参考訳(メタデータ) (2020-01-10T18:46:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。