論文の概要: Data-Driven Joint Inversions for PDE Models
- arxiv url: http://arxiv.org/abs/2210.09228v1
- Date: Mon, 17 Oct 2022 16:21:45 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-18 22:14:02.085788
- Title: Data-Driven Joint Inversions for PDE Models
- Title(参考訳): pdeモデルのためのデータ駆動ジョイントインバージョン
- Authors: Kui Ren, Lu Zhang
- Abstract要約: このような連立反転問題に対する統合的データ駆動・モデルベース反復再構成フレームワークを提案する。
提案手法は補足データとPDEモデルとを結合し,データ駆動モデリングプロセスとモデルベース再構築手順との整合性を実現する。
- 参考スコア(独自算出の注目度): 24.162935839841317
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of simultaneously reconstructing multiple physical coefficients in
partial differential equations from observed data is ubiquitous in
applications. In this work, we propose an integrated data-driven and
model-based iterative reconstruction framework for such joint inversion
problems where additional data on the unknown coefficients are supplemented for
better reconstructions. Our method couples the supplementary data with the PDE
model to make the data-driven modeling process consistent with the model-based
reconstruction procedure. We characterize the impact of learning uncertainty on
the joint inversion results for two typical model inverse problems. Numerical
evidences are provided to demonstrate the feasibility of using data-driven
models to improve joint inversion of physical models.
- Abstract(参考訳): 観測データから偏微分方程式における複数の物理係数を同時に再構成する作業は、応用においてユビキタスである。
そこで本研究では,未知係数の追加データを補足した統合逆変換問題に対するデータ駆動型およびモデルベース反復再構築フレームワークを提案する。
提案手法は補足データをPDEモデルと組み合わせて,データ駆動モデリングプロセスとモデルに基づく再構築手順を一致させる。
2つの典型的なモデル逆問題に対する連立反転結果に対する学習の不確実性の影響を特徴づける。
データ駆動モデルを用いて物理モデルの結合反転を改善する可能性を示す数値的な証拠が提供される。
関連論文リスト
- Solving Inverse Problems with Model Mismatch using Untrained Neural Networks within Model-based Architectures [14.551812310439004]
モデルベースアーキテクチャでは,各インスタンスの計測領域におけるデータの一貫性を一致させるために,トレーニングされていないフォワードモデル残差ブロックを導入する。
提案手法は,パラメータ感受性が低く,追加データを必要としない統一解を提供し,前方モデルの同時適用と1パスの再構成を可能にする。
論文 参考訳(メタデータ) (2024-03-07T19:02:13Z) - CoCoGen: Physically-Consistent and Conditioned Score-based Generative Models for Forward and Inverse Problems [1.0923877073891446]
この研究は生成モデルの到達範囲を物理的問題領域に拡張する。
基礎となるPDEとの整合性を促進するための効率的なアプローチを提案する。
各種物理課題におけるスコアベース生成モデルの可能性と汎用性を示す。
論文 参考訳(メタデータ) (2023-12-16T19:56:10Z) - Joint Distributional Learning via Cramer-Wold Distance [0.7614628596146602]
高次元データセットの共分散学習を容易にするために,クレーマー-ウォルド距離正規化を導入し,クレーマー-ウォルド距離正規化法を提案する。
また、フレキシブルな事前モデリングを可能にする2段階学習手法を導入し、集約後と事前分布のアライメントを改善する。
論文 参考訳(メタデータ) (2023-10-25T05:24:23Z) - Discovering Interpretable Physical Models using Symbolic Regression and
Discrete Exterior Calculus [55.2480439325792]
本稿では,記号回帰(SR)と離散指数計算(DEC)を組み合わせて物理モデルの自動発見を行うフレームワークを提案する。
DECは、SRの物理問題への最先端の応用を越えている、場の理論の離散的な類似に対して、ビルディングブロックを提供する。
実験データから連続体物理の3つのモデルを再発見し,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2023-10-10T13:23:05Z) - Representation Transfer Learning via Multiple Pre-trained models for
Linear Regression [3.5788754401889014]
サンプルが少ないデータ領域(ターゲット)で線形回帰モデルを学習する問題を考察する。
学習を支援するために、私たちは、潜在的に異なるデータドメインでトレーニングされた事前訓練された回帰モデルセットを提供しています。
対象モデルを構築するための表現伝達に基づく学習手法を提案する。
論文 参考訳(メタデータ) (2023-05-25T19:35:24Z) - PartMix: Regularization Strategy to Learn Part Discovery for
Visible-Infrared Person Re-identification [76.40417061480564]
本稿では、パートベース可視赤外線人物再識別(VI-ReID)モデルに対して、PartMixと呼ばれる新しいデータ拡張手法を提案する。
部分記述子をモダリティに混合することにより、拡張サンプルを合成し、パートベースVI-ReIDモデルの性能を向上させる。
論文 参考訳(メタデータ) (2023-04-04T05:21:23Z) - Learning from few examples with nonlinear feature maps [68.8204255655161]
我々はこの現象を探求し、AIモデルの特徴空間の次元性、データ分散の非退化、モデルの一般化能力の間の重要な関係を明らかにする。
本分析の主な推力は、元のデータを高次元および無限次元空間にマッピングする非線形特徴変換が結果のモデル一般化能力に与える影響である。
論文 参考訳(メタデータ) (2022-03-31T10:36:50Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
現在の自己エンコーダに基づく非絡み合い表現学習法は、(集合体)後部をペナルティ化し、潜伏因子の統計的独立を促進することで、非絡み合いを実現する。
本稿では,不整合因子をペナルティに基づく不整合表現学習法を用いて学習する,新しい多段階モデリング手法を提案する。
次に、低品質な再構成を、欠落した関連潜伏変数をモデル化するために訓練された別の深層生成モデルで改善する。
論文 参考訳(メタデータ) (2020-10-25T18:51:15Z) - Robust Finite Mixture Regression for Heterogeneous Targets [70.19798470463378]
本稿では,サンプルクラスタの探索と,複数の不完全な混合型ターゲットを同時にモデル化するFMRモデルを提案する。
我々は、高次元の学習フレームワークの下で、無症状のオラクルのパフォーマンス境界をモデルに提供します。
その結果,我々のモデルは最先端の性能を達成できることがわかった。
論文 参考訳(メタデータ) (2020-10-12T03:27:07Z) - Predicting Multidimensional Data via Tensor Learning [0.0]
本研究では,本データセットの内在的多次元構造を保持するモデルを開発する。
モデルパラメータを推定するために、オルタネート・リースト・スクエアスアルゴリズムを開発した。
提案モデルは,予測文献に存在するベンチマークモデルより優れている。
論文 参考訳(メタデータ) (2020-02-11T11:57:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。