論文の概要: Use of BNNM for interference wave solutions of the gBS-like equation and
comparison with PINNs
- arxiv url: http://arxiv.org/abs/2210.12154v2
- Date: Tue, 25 Oct 2022 11:20:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-02 00:11:33.157274
- Title: Use of BNNM for interference wave solutions of the gBS-like equation and
comparison with PINNs
- Title(参考訳): gBS型方程式の干渉波解に対するBNNMの利用とPINNとの比較
- Authors: Shashank Reddy Vadyala, and Sai Nethra Betgeri
- Abstract要約: 本研究では、一般化された双線形法により、一般化された破壊ソリトン様(gBS様)方程式を導出する。
双線形ニューラルネットワーク法(BNNM)と物理情報ニューラルネットワーク(PINN)を用いてgBS様方程式の干渉波解を求める。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, the generalized broken soliton-like (gBS-like) equation is
derived through the generalized bilinear method. The neural network model,
which can fit the explicit solution with zero error, is found. The interference
wave solution of the gBS-like equation is obtained by using the bilinear neural
network method (BNNM) and physical informed neural networks (PINNs).
Interference waves are shown well via three-dimensional plots and density
plots. Compared with PINNs, the bilinear neural network method is not only more
accurate but also faster.
- Abstract(参考訳): 本研究では, 一般化ソリトン様(gbs様)方程式を一般化双線型法で導出する。
ニューラルネットワークモデルは、明示的な解をゼロエラーに適合させることができる。
双線形ニューラルネットワーク法(BNNM)と物理情報ニューラルネットワーク(PINN)を用いて、gBS様方程式の干渉波解を求める。
干渉波は3次元プロットと密度プロットによってよく示される。
PINNと比較すると、バイリニアニューラルネットワークはより正確であるだけでなく、より高速である。
関連論文リスト
- Chebyshev Spectral Neural Networks for Solving Partial Differential Equations [0.0]
この研究は、フィードフォワードニューラルネットワークモデルとエラーバックプロパゲーション原理を用いて、損失関数の計算に自動微分(AD)を利用する。
楕円偏微分方程式を用いて,CSNNモデルの数値効率と精度について検討し,よく知られた物理インフォームドニューラルネットワーク(PINN)法と比較した。
論文 参考訳(メタデータ) (2024-06-06T05:31:45Z) - Binary structured physics-informed neural networks for solving equations
with rapidly changing solutions [3.6415476576196055]
偏微分方程式(PDE)を解くための有望なアプローチとして、物理情報ニューラルネットワーク(PINN)が登場した。
本稿では、ニューラルネットワークコンポーネントとしてバイナリ構造化ニューラルネットワーク(BsNN)を用いる、バイナリ構造化物理インフォームドニューラルネットワーク(BsPINN)フレームワークを提案する。
BsPINNは、PINNよりも収束速度と精度が優れている。
論文 参考訳(メタデータ) (2024-01-23T14:37:51Z) - GaborPINN: Efficient physics informed neural networks using
multiplicative filtered networks [0.0]
物理インフォームドニューラルネットワーク(PINN)は、ニューラルネットワーク(NN)で表される機能的ウェーブフィールドソリューションを提供する
本稿では,学習における波動場の特徴のいくつかを組み込んだ乗算フィルタネットワークを用いた改良PINNを提案する。
提案手法は,従来のPINNと比較して,収束速度が最大2マグニチュード向上する。
論文 参考訳(メタデータ) (2023-08-10T19:51:00Z) - Splitting physics-informed neural networks for inferring the dynamics of
integer- and fractional-order neuron models [0.0]
分割法と物理情報ニューラルネットワーク(PINN)を組み合わせた微分方程式の前方解法を提案する。
提案手法はPINNを分割し,動的システムにPINNを適用するという課題に効果的に対処する。
論文 参考訳(メタデータ) (2023-04-26T00:11:00Z) - Physics-informed Neural Networks approach to solve the Blasius function [0.0]
本稿では,ブラシウス関数の解法として物理インフォームドニューラルネットワーク(PINN)を提案する。
本手法は, 数値的, 従来手法と同等の結果が得られた。
論文 参考訳(メタデータ) (2022-12-31T03:14:42Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
我々は、PINNを正しい解に収束させるため、解区間を徐々に拡大することを提案する。
すべてのアンサンブルのメンバーは、観測されたデータの近くで同じ解に収束する。
提案手法は, 得られた解の精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:05:34Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Improving predictions of Bayesian neural nets via local linearization [79.21517734364093]
ガウス・ニュートン近似は基礎となるベイズニューラルネットワーク(BNN)の局所線形化として理解されるべきである。
この線形化モデルを後部推論に使用するので、元のモデルではなく、この修正モデルを使用することも予測すべきである。
この修正された予測を"GLM predictive"と呼び、Laplace近似の共通不適合問題を効果的に解決することを示す。
論文 参考訳(メタデータ) (2020-08-19T12:35:55Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - Graph Neural Networks for Motion Planning [108.51253840181677]
低次元問題に対する高密度固定グラフ上のGNNと高次元問題に対するサンプリングベースGNNの2つの手法を提案する。
RRT(Rapidly-Exploring Random Trees)におけるクリティカルノードの特定やサンプリング分布の学習といった計画上の問題にGNNが取り組む能力について検討する。
臨界サンプリング、振り子、6つのDoFロボットアームによる実験では、GNNは従来の分析手法の改善だけでなく、完全に接続されたニューラルネットワークや畳み込みニューラルネットワークを用いた学習アプローチも示している。
論文 参考訳(メタデータ) (2020-06-11T08:19:06Z) - Binarized Graph Neural Network [65.20589262811677]
我々は二項化グラフニューラルネットワークを開発し、二項化ネットワークパラメータを用いてノードのバイナリ表現を学習する。
提案手法は既存のGNNベースの埋め込み手法にシームレスに統合できる。
実験により、提案された二項化グラフニューラルネットワーク、すなわちBGNは、時間と空間の両方の観点から、桁違いに効率的であることが示されている。
論文 参考訳(メタデータ) (2020-04-19T09:43:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。