論文の概要: Physics-informed Neural Networks approach to solve the Blasius function
- arxiv url: http://arxiv.org/abs/2301.00106v1
- Date: Sat, 31 Dec 2022 03:14:42 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-03 16:05:55.303973
- Title: Physics-informed Neural Networks approach to solve the Blasius function
- Title(参考訳): 物理インフォームドニューラルネットワークによるブラシウス関数の解法
- Authors: Greeshma Krishna, Malavika S Nair, Pramod P Nair, Anil Lal S
- Abstract要約: 本稿では,ブラシウス関数の解法として物理インフォームドニューラルネットワーク(PINN)を提案する。
本手法は, 数値的, 従来手法と同等の結果が得られた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning techniques with neural networks have been used effectively in
computational fluid dynamics (CFD) to obtain solutions to nonlinear
differential equations. This paper presents a physics-informed neural network
(PINN) approach to solve the Blasius function. This method eliminates the
process of changing the non-linear differential equation to an initial value
problem. Also, it tackles the convergence issue arising in the conventional
series solution. It is seen that this method produces results that are at par
with the numerical and conventional methods. The solution is extended to the
negative axis to show that PINNs capture the singularity of the function at
$\eta=-5.69$
- Abstract(参考訳): ニューラルネットワークを用いたディープラーニング技術は、非線形微分方程式の解を得るために計算流体力学(CFD)に効果的に用いられている。
本稿では,ブラシウス関数の解法として物理インフォームドニューラルネットワーク(PINN)を提案する。
この方法は、非線形微分方程式を初期値問題に変更する過程を排除する。
また、従来の直列解に生じる収束問題にも対処する。
この手法は, 従来の数値的手法と同等の結果が得られることがわかった。
解は負軸に拡張され、ピンが関数の特異点を $\eta=-5.69$ で捉えることを示す。
関連論文リスト
- Chebyshev Spectral Neural Networks for Solving Partial Differential Equations [0.0]
この研究は、フィードフォワードニューラルネットワークモデルとエラーバックプロパゲーション原理を用いて、損失関数の計算に自動微分(AD)を利用する。
楕円偏微分方程式を用いて,CSNNモデルの数値効率と精度について検討し,よく知られた物理インフォームドニューラルネットワーク(PINN)法と比較した。
論文 参考訳(メタデータ) (2024-06-06T05:31:45Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - A deep branching solver for fully nonlinear partial differential
equations [0.1474723404975345]
完全非線形PDEの数値解に対する分岐アルゴリズムの多次元深層学習実装を提案する。
このアプローチは、任意の順序の勾配項を含む機能的非線形性に取り組むように設計されている。
論文 参考訳(メタデータ) (2022-03-07T09:46:46Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Inverse Problem of Nonlinear Schr\"odinger Equation as Learning of
Convolutional Neural Network [5.676923179244324]
提案手法を用いて,パラメータの相対的精度を推定できることを示す。
深い学習を伴う偏微分方程式の逆問題における自然な枠組みを提供する。
論文 参考訳(メタデータ) (2021-07-19T02:54:37Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
本研究では,ソルバ空間の変動がニューラルODEの性能を向上する方法について検討する。
解法パラメータ化の正しい選択は, 敵の攻撃に対するロバスト性の観点から, 神経odesモデルに大きな影響を与える可能性がある。
論文 参考訳(メタデータ) (2021-03-15T17:26:34Z) - Deep neural network for solving differential equations motivated by
Legendre-Galerkin approximation [16.64525769134209]
線形微分方程式と非線形微分方程式の両方における様々なニューラルネットワークアーキテクチャの性能と精度について検討する。
我々は、微分方程式の解を予測するために、新しいレジェンダ-ガレルキンディープニューラルネットワーク(LGNet)アルゴリズムを実装した。
論文 参考訳(メタデータ) (2020-10-24T20:25:09Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - A Derivative-Free Method for Solving Elliptic Partial Differential
Equations with Deep Neural Networks [2.578242050187029]
楕円型偏微分方程式のクラスを解くためのディープニューラルネットワークに基づく手法を提案する。
我々は、PDEの確率的表現の指導の下で訓練されたディープニューラルネットワークを用いて、PDEの解を近似する。
ブラウンのウォーカーがドメインを探索するにつれ、ディープニューラルネットワークは強化学習の形式で反復的に訓練される。
論文 参考訳(メタデータ) (2020-01-17T03:29:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。