論文の概要: Splitting physics-informed neural networks for inferring the dynamics of
integer- and fractional-order neuron models
- arxiv url: http://arxiv.org/abs/2304.13205v1
- Date: Wed, 26 Apr 2023 00:11:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-27 15:55:48.787460
- Title: Splitting physics-informed neural networks for inferring the dynamics of
integer- and fractional-order neuron models
- Title(参考訳): 分数次および分数次ニューロンモデルのダイナミクスを推定する分割物理型ニューラルネットワーク
- Authors: Simin Shekarpaz, Fanhai Zeng, and George Karniadakis
- Abstract要約: 分割法と物理情報ニューラルネットワーク(PINN)を組み合わせた微分方程式の前方解法を提案する。
提案手法はPINNを分割し,動的システムにPINNを適用するという課題に効果的に対処する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce a new approach for solving forward systems of differential
equations using a combination of splitting methods and physics-informed neural
networks (PINNs). The proposed method, splitting PINN, effectively addresses
the challenge of applying PINNs to forward dynamical systems and demonstrates
improved accuracy through its application to neuron models. Specifically, we
apply operator splitting to decompose the original neuron model into
sub-problems that are then solved using PINNs. Moreover, we develop an $L^1$
scheme for discretizing fractional derivatives in fractional neuron models,
leading to improved accuracy and efficiency. The results of this study
highlight the potential of splitting PINNs in solving both integer- and
fractional-order neuron models, as well as other similar systems in
computational science and engineering.
- Abstract(参考訳): 本稿では,微分方程式の前方系を分割法と物理式ニューラルネットワーク(pinns)を組み合わせて解く新しい手法を提案する。
提案手法はPINNを分割して動的システムにPINNを適用するという課題に効果的に対処し,ニューロンモデルへの応用による精度の向上を実証する。
具体的には、演算子分割を用いて元のニューロンモデルをサブプロブレムに分解し、PINNを用いて解いた。
さらに、分数ニューロンモデルにおける分数導関数の離散化のための$L^1$スキームを開発し、精度と効率を改善した。
この研究の結果は、整数および分数次ニューロンモデルと計算科学および工学における他の類似システムの両方を解決する際にピンを分割する可能性を強調している。
関連論文リスト
- Chebyshev Spectral Neural Networks for Solving Partial Differential Equations [0.0]
この研究は、フィードフォワードニューラルネットワークモデルとエラーバックプロパゲーション原理を用いて、損失関数の計算に自動微分(AD)を利用する。
楕円偏微分方程式を用いて,CSNNモデルの数値効率と精度について検討し,よく知られた物理インフォームドニューラルネットワーク(PINN)法と比較した。
論文 参考訳(メタデータ) (2024-06-06T05:31:45Z) - Binary structured physics-informed neural networks for solving equations
with rapidly changing solutions [3.6415476576196055]
偏微分方程式(PDE)を解くための有望なアプローチとして、物理情報ニューラルネットワーク(PINN)が登場した。
本稿では、ニューラルネットワークコンポーネントとしてバイナリ構造化ニューラルネットワーク(BsNN)を用いる、バイナリ構造化物理インフォームドニューラルネットワーク(BsPINN)フレームワークを提案する。
BsPINNは、PINNよりも収束速度と精度が優れている。
論文 参考訳(メタデータ) (2024-01-23T14:37:51Z) - PMNN:Physical Model-driven Neural Network for solving time-fractional
differential equations [17.66402435033991]
時間差分方程式を解くために, 革新的物理モデル駆動ニューラルネットワーク (PMNN) 法を提案する。
ディープニューラルネットワーク(DNN)と分数微分の近似を効果的に組み合わせる。
論文 参考訳(メタデータ) (2023-10-07T12:43:32Z) - Enforcing Continuous Physical Symmetries in Deep Learning Network for
Solving Partial Differential Equations [3.6317085868198467]
我々は,PDEのリー対称性によって誘導される不変表面条件をPINNの損失関数に組み込む,新しい対称性を持つ物理情報ニューラルネットワーク(SPINN)を提案する。
SPINNは、トレーニングポイントが少なく、ニューラルネットワークのよりシンプルなアーキテクチャで、PINNよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-06-19T00:44:22Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Training Feedback Spiking Neural Networks by Implicit Differentiation on
the Equilibrium State [66.2457134675891]
スパイキングニューラルネットワーク(英: Spiking Neural Network、SNN)は、ニューロモルフィックハードウェア上でエネルギー効率の高い実装を可能にする脳にインスパイアされたモデルである。
既存のほとんどの手法は、人工ニューラルネットワークのバックプロパゲーションフレームワークとフィードフォワードアーキテクチャを模倣している。
本稿では,フォワード計算の正逆性に依存しない新しいトレーニング手法を提案する。
論文 参考訳(メタデータ) (2021-09-29T07:46:54Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - Provably Efficient Neural Estimation of Structural Equation Model: An
Adversarial Approach [144.21892195917758]
一般化構造方程式モデル(SEM)のクラスにおける推定について検討する。
線形作用素方程式をmin-maxゲームとして定式化し、ニューラルネットワーク(NN)でパラメータ化し、勾配勾配を用いてニューラルネットワークのパラメータを学習する。
提案手法は,サンプル分割を必要とせず,確固とした収束性を持つNNをベースとしたSEMの抽出可能な推定手順を初めて提供する。
論文 参考訳(メタデータ) (2020-07-02T17:55:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。