論文の概要: JAX-DIPS: Neural bootstrapping of finite discretization methods and
application to elliptic problems with discontinuities
- arxiv url: http://arxiv.org/abs/2210.14312v2
- Date: Sun, 13 Aug 2023 19:25:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-15 23:08:21.683528
- Title: JAX-DIPS: Neural bootstrapping of finite discretization methods and
application to elliptic problems with discontinuities
- Title(参考訳): JAX-DIPS:有限離散化法のニューラルブートストラップと不連続な楕円問題への応用
- Authors: Pouria Mistani, Samira Pakravan, Rajesh Ilango, Frederic Gibou
- Abstract要約: この戦略は、偏微分方程式のニューラルネットワークサロゲートモデルを効率的に訓練するために使用できる。
提案したニューラルブートストラップ法(以下 NBM と呼ぶ)は,PDE システムの有限離散化残基の評価に基づいている。
NBMは他のPINNタイプのフレームワークとメモリとトレーニングの速度で競合することを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: We present a scalable strategy for development of mesh-free hybrid
neuro-symbolic partial differential equation solvers based on existing
mesh-based numerical discretization methods. Particularly, this strategy can be
used to efficiently train neural network surrogate models of partial
differential equations by (i) leveraging the accuracy and convergence
properties of advanced numerical methods, solvers, and preconditioners, as well
as (ii) better scalability to higher order PDEs by strictly limiting
optimization to first order automatic differentiation. The presented neural
bootstrapping method (hereby dubbed NBM) is based on evaluation of the finite
discretization residuals of the PDE system obtained on implicit Cartesian cells
centered on a set of random collocation points with respect to trainable
parameters of the neural network. Importantly, the conservation laws and
symmetries present in the bootstrapped finite discretization equations inform
the neural network about solution regularities within local neighborhoods of
training points. We apply NBM to the important class of elliptic problems with
jump conditions across irregular interfaces in three spatial dimensions. We
show the method is convergent such that model accuracy improves by increasing
number of collocation points in the domain and predonditioning the residuals.
We show NBM is competitive in terms of memory and training speed with other
PINN-type frameworks. The algorithms presented here are implemented using
\texttt{JAX} in a software package named \texttt{JAX-DIPS}
(https://github.com/JAX-DIPS/JAX-DIPS), standing for differentiable interfacial
PDE solver. We open sourced \texttt{JAX-DIPS} to facilitate research into use
of differentiable algorithms for developing hybrid PDE solvers.
- Abstract(参考訳): 本稿では,メッシュ型数値離散化法に基づくメッシュフリーハイブリッド型ニューロシンボリック偏微分方程式解法の開発のためのスケーラブルな戦略を提案する。
特に、この戦略は偏微分方程式のモデルを効率的に訓練するために使うことができる。
(i)高度な数値解法、解法、プリコンディショナーの精度と収束特性の活用
二 最適化を一階自動微分に厳格に制限することにより、高階PDEに対するスケーラビリティを向上する。
提案手法(以下nbmと呼ぶ)は、ニューラルネットワークの学習可能なパラメータに関して、ランダムなコロケーション点の集合を中心とする暗黙のデカルトセル上で得られるpdeシステムの有限離散化残差の評価に基づいている。
重要なことに、ブートストラップされた有限離散化方程式に存在する保存則と対称性は、トレーニングポイントの局所近傍における解正則性についてニューラルネットワークに知らせる。
NBMを3次元における不規則な界面を横断するジャンプ条件を持つ楕円問題の重要なクラスに適用する。
本手法は,領域内のコロケーション点数を増やして残差を前置することにより,モデルの精度が向上するように収束することを示す。
NBMは他のPINNタイプのフレームワークとメモリとトレーニングの速度で競合することを示す。
ここで提示されるアルゴリズムは、ソフトウェアパッケージ \texttt{JAX-DIPS} (https://github.com/JAX-DIPS/JAX-DIPS) に \textt{JAX} を用いて実装され、相違可能な界面PDEソルバを表す。
我々は,ハイブリッド pde ソルバ開発における微分可能アルゴリズムの利用研究を容易にするために, \texttt{jax-dips} をオープンソース化した。
関連論文リスト
- A Natural Primal-Dual Hybrid Gradient Method for Adversarial Neural Network Training on Solving Partial Differential Equations [9.588717577573684]
偏微分方程式(PDE)を解くためのスケーラブルな事前条件付き原始ハイブリッド勾配アルゴリズムを提案する。
本稿では,提案手法の性能を,一般的なディープラーニングアルゴリズムと比較する。
その結果,提案手法は効率的かつ堅牢に動作し,安定に収束することが示唆された。
論文 参考訳(メタデータ) (2024-11-09T20:39:10Z) - Constrained or Unconstrained? Neural-Network-Based Equation Discovery from Data [0.0]
我々はPDEをニューラルネットワークとして表現し、物理情報ニューラルネットワーク(PINN)に似た中間状態表現を用いる。
本稿では,この制約付き最適化問題を解くために,ペナルティ法と広く利用されている信頼領域障壁法を提案する。
バーガーズ方程式とコルトヴェーグ・ド・ヴライス方程式に関する我々の結果は、後者の制約付き手法がペナルティ法より優れていることを示している。
論文 参考訳(メタデータ) (2024-05-30T01:55:44Z) - RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法として広く応用されている。
本稿では,地域最適化としての新たな訓練パラダイムを提案し,理論的に検討する。
実践的なトレーニングアルゴリズムであるRerea Optimized PINN(RoPINN)は、この新しいパラダイムからシームレスに派生している。
論文 参考訳(メタデータ) (2024-05-23T09:45:57Z) - An Extreme Learning Machine-Based Method for Computational PDEs in
Higher Dimensions [1.2981626828414923]
本稿では,確率型ニューラルネットワークに基づく高次元偏微分方程式(PDE)の解法について述べる。
本稿では,高次元線形・非線形定常・動的PDEの数値シミュレーションを行い,その性能を実証する。
論文 参考訳(メタデータ) (2023-09-13T15:59:02Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Semi-Implicit Neural Solver for Time-dependent Partial Differential
Equations [4.246966726709308]
本稿では,PDEの任意のクラスに対して,データ駆動方式で最適な反復スキームを学習するためのニューラルソルバを提案する。
従来の反復解法に類似したニューラルソルバの正当性と収束性に関する理論的保証を提供する。
論文 参考訳(メタデータ) (2021-09-03T12:03:10Z) - Hybrid FEM-NN models: Combining artificial neural networks with the
finite element method [0.0]
本稿では, ニューラルネットワークと物理原理制約を組み合わせた偏微分方程式(PDE)の手法を提案する。
このアプローチでは、PDEを損失関数の一部とする最適化の強い制約として尊重しながら、ニューラルネットワークをトレーニングすることができる。
本稿では,ディープニューラルネットワークを用いた複雑な心筋モデル問題の解法を示す。
論文 参考訳(メタデータ) (2021-01-04T13:36:06Z) - Identification of Probability weighted ARX models with arbitrary domains [75.91002178647165]
PieceWise Affineモデルは、ハイブリッドシステムの他のクラスに対する普遍近似、局所線型性、同値性を保証する。
本研究では,任意の領域を持つ固有入力モデル(NPWARX)を用いたPieceWise Auto Regressiveの同定に着目する。
このアーキテクチャは、機械学習の分野で開発されたMixture of Expertの概念に従って考案された。
論文 参考訳(メタデータ) (2020-09-29T12:50:33Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。