論文の概要: Graph Filter Transfer via Probability Density Ratio Weighting
- arxiv url: http://arxiv.org/abs/2210.14633v1
- Date: Wed, 26 Oct 2022 11:23:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-27 16:00:42.417018
- Title: Graph Filter Transfer via Probability Density Ratio Weighting
- Title(参考訳): 確率密度比重み付けによるグラフフィルタの転送
- Authors: Koki Yamada
- Abstract要約: 本稿では,トポロジ変化下での履歴データから有効推定器を学習するグラフフィルタ転送手法を提案する。
合成データを用いた実験により,提案手法が他の手法よりも優れていることが示された。
- 参考スコア(独自算出の注目度): 3.9596068699962315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The problem of recovering graph signals is one of the main topics in graph
signal processing. A representative approach to this problem is the graph
Wiener filter, which utilizes the statistical information of the target signal
computed from historical data to construct an effective estimator. However, we
often encounter situations where the current graph differs from that of
historical data due to topology changes, leading to performance degradation of
the estimator. This paper proposes a graph filter transfer method, which learns
an effective estimator from historical data under topology changes. The
proposed method leverages the probability density ratio of the current and
historical observations and constructs an estimator that minimizes the
reconstruction error in the current graph domain. The experiment on synthetic
data demonstrates that the proposed method outperforms other methods.
- Abstract(参考訳): グラフ信号の回復問題は、グラフ信号処理における主要なトピックの1つである。
この問題に対する代表的なアプローチはグラフワイナーフィルタであり、歴史データから算出された目標信号の統計情報を利用して効果的な推定器を構築する。
しかし、トポロジーの変化によって現在のグラフが過去のデータと異なる状況に陥り、推定器の性能が低下することが多い。
本稿では,トポロジ変化による履歴データから有効推定器を学習するグラフフィルタ転送手法を提案する。
提案手法は,現在および過去の観測値の確率密度比を活用し,現在のグラフ領域における再構成誤差を最小化する推定器を構成する。
合成データを用いた実験は,提案手法が他の手法よりも優れていることを示す。
関連論文リスト
- Deep Manifold Graph Auto-Encoder for Attributed Graph Embedding [51.75091298017941]
本稿では,属性付きグラフデータに対する新しいDeep Manifold (Variational) Graph Auto-Encoder (DMVGAE/DMGAE)を提案する。
提案手法は,最先端のベースラインアルゴリズムを,一般的なデータセット間でのダウンストリームタスクの差を大きく越える。
論文 参考訳(メタデータ) (2024-01-12T17:57:07Z) - Large Graph Signal Denoising with Application to Differential Privacy [2.867517731896504]
本稿では,データ駆動型ウェーブレット・タイト・フレーム手法を用いて,グラフ上の信号のデノイングを行う場合について考察する。
我々はChebyshev-Jackson近似を用いて、大きなグラフにスケーラブルにする。
実データとシミュレーションデータから,様々な大きさのグラフに対して総合的な性能解析を行う。
論文 参考訳(メタデータ) (2022-09-05T16:32:54Z) - FGOT: Graph Distances based on Filters and Optimal Transport [62.779521543654134]
グラフ比較は、グラフ間の類似点と相違点の識別を扱う。
大きな障害は、グラフの未知のアライメントと、正確で安価な比較指標の欠如である。
本研究では,フィルタグラフ距離近似を導入する。
論文 参考訳(メタデータ) (2021-09-09T17:43:07Z) - Scaling Up Graph Neural Networks Via Graph Coarsening [18.176326897605225]
グラフニューラルネットワーク(GNN)のスケーラビリティは、マシンラーニングにおける大きな課題のひとつだ。
本稿では,GNNのスケーラブルなトレーニングにグラフ粗大化を用いることを提案する。
既成の粗大化法を単純に適用すれば,分類精度を著しく低下させることなく,ノード数を最大10倍に削減できることを示す。
論文 参考訳(メタデータ) (2021-06-09T15:46:17Z) - Learning Graphs from Smooth Signals under Moment Uncertainty [23.868075779606425]
与えられたグラフ信号の集合からグラフ構造を推測する問題を検討する。
従来のグラフ学習モデルは、この分布の不確実性を考慮していない。
論文 参考訳(メタデータ) (2021-05-12T06:47:34Z) - Predicting traffic signals on transportation networks using
spatio-temporal correlations on graphs [56.48498624951417]
本稿では,複数の熱拡散カーネルをデータ駆動予測モデルにマージして交通信号を予測する交通伝搬モデルを提案する。
予測誤差を最小限に抑えるためにベイズ推定を用いてモデルパラメータを最適化し,2つの手法の混合率を決定する。
提案モデルでは,計算労力の少ない最先端のディープニューラルネットワークに匹敵する予測精度を示す。
論文 参考訳(メタデータ) (2021-04-27T18:17:42Z) - FiGLearn: Filter and Graph Learning using Optimal Transport [49.428169585114496]
信号観測からグラフとその生成フィルタを学習するための新しいグラフ信号処理フレームワークを提案する。
ごくわずかな情報しか得られない場合、このフレームワークが欠落した値を推測するのにどのように使えるかを示す。
論文 参考訳(メタデータ) (2020-10-29T10:00:42Z) - Multilayer Clustered Graph Learning [66.94201299553336]
我々は、観測された層を代表グラフに適切に集約するために、データ忠実度用語として対照的な損失を用いる。
実験により,本手法がクラスタクラスタw.r.tに繋がることが示された。
クラスタリング問題を解くためのクラスタリングアルゴリズムを学習する。
論文 参考訳(メタデータ) (2020-10-29T09:58:02Z) - Unrolling of Deep Graph Total Variation for Image Denoising [106.93258903150702]
本稿では,従来のグラフ信号フィルタリングと深い特徴学習を併用して,競合するハイブリッド設計を提案する。
解釈可能な低パスグラフフィルタを用い、最先端のDL復調方式DnCNNよりも80%少ないネットワークパラメータを用いる。
論文 参考訳(メタデータ) (2020-10-21T20:04:22Z) - Graph Convolution with Low-rank Learnable Local Filters [32.00396411583352]
本稿では,学習可能な低ランク局所フィルタを用いた新しいグラフ畳み込み手法を提案する。
従来のスペクトルグラフ畳み込み法よりも明らかに表現力が高い。
入力グラフデータに対する表現は理論的に証明され、グラフフィルタの局所性と局所グラフの正規化を利用する。
論文 参考訳(メタデータ) (2020-08-04T20:34:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。