論文の概要: Resource-frugal Hamiltonian eigenstate preparation via repeated quantum
phase estimation measurements
- arxiv url: http://arxiv.org/abs/2212.00846v1
- Date: Thu, 1 Dec 2022 20:07:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-09 19:27:40.030795
- Title: Resource-frugal Hamiltonian eigenstate preparation via repeated quantum
phase estimation measurements
- Title(参考訳): 繰り返し量子位相推定測定による資源フルーガルハミルトン固有状態生成
- Authors: Richard Meister, Simon C. Benjamin
- Abstract要約: ハミルトン固有状態の合成は、量子コンピューティングにおける多くの応用に不可欠である。
我々は,この手法の変種からアイデアを取り入れ,資源フルーガル反復方式を実装した。
我々は、全体効率を高めるために、ターゲットハミルトンの修正を含む拡張を特徴付ける。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The preparation of Hamiltonian eigenstates is essential for many applications
in quantum computing; the efficiency with which this can be done is of key
interest. A canonical approach exploits the quantum phase estimation (QPE)
algorithm. We adopt ideas from variants of this method to implement a
resource-frugal iterative scheme, and provide analytic bounds on the complexity
(simulation time cost) for various cases of available information and tools. We
propose and characterise an extension involving a modification of the target
Hamiltonian to increase overall efficiency. The presented methods and bounds
are then demonstrated by preparing the ground state of the Hamiltonians of LiH
and H$_2$ in second quantisation; we report the performance of both ideal and
noisy implementations using simulated quantum computers. Convergence is
generally achieved much faster than the bounds suggest, while the qualitative
features are validated.
- Abstract(参考訳): ハミルトン固有状態の合成は、量子コンピューティングにおける多くの応用に必須であり、その効率性は重要な関心事である。
正準的アプローチは量子位相推定(qpe)アルゴリズムを利用する。
本手法の変種からのアイデアを資源フルーガー反復方式の実装に適用し、利用可能な情報やツールの様々なケースにおける複雑さ(シミュレーション時間コスト)の解析的境界を提供する。
我々は、全体効率を高めるために、ターゲットハミルトンの修正を含む拡張を提案し、特徴付ける。
次に,2次量子化におけるLiHおよびH$_2$のハミルトニアンの基底状態を作成し,シミュレートされた量子コンピュータを用いた理想的および雑音的実装の性能を報告する。
収束は一般に境界よりもはるかに早く達成され、質的特徴は検証される。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Applicability of Measurement-based Quantum Computation towards Physically-driven Variational Quantum Eigensolver [17.975555487972166]
変分量子アルゴリズムは、短期量子の利点を得る最も有望な方法の1つである。
測定に基づく量子計算方式で量子アルゴリズムを開発するための障害は、リソースコストである。
量子多体系シミュレーションタスクのための効率的な測定ベース量子アルゴリズム(MBHVA)を提案する。
論文 参考訳(メタデータ) (2023-07-19T08:07:53Z) - Fighting noise with noise: a stochastic projective quantum eigensolver [0.0]
本稿では,量子状態の必要なサンプリングにおいて,物理観測値の2次低減につながる新しい手法を提案する。
この方法は、量子デバイス上の一般化学のための励起状態計算やシミュレーションに応用できる。
論文 参考訳(メタデータ) (2023-06-26T09:22:06Z) - Scalable Quantum Computation of Highly Excited Eigenstates with Spectral
Transforms [0.76146285961466]
我々はHHLアルゴリズムを用いて、物理的ハミルトニアンの内部固有状態を変動的かつ標的的に生成する。
これは量子コンピュータ上の逆ハミルトニアンの期待値の効率的な計算によって実現される。
本稿では, フォールトトレラント, 短期量子コンピュータにおけるこの方式の実装について詳述する。
論文 参考訳(メタデータ) (2023-02-13T19:01:02Z) - End-to-end resource analysis for quantum interior point methods and portfolio optimization [63.4863637315163]
問題入力から問題出力までの完全な量子回路レベルのアルゴリズム記述を提供する。
アルゴリズムの実行に必要な論理量子ビットの数と非クリフォードTゲートの量/深さを報告する。
論文 参考訳(メタデータ) (2022-11-22T18:54:48Z) - Improved iterative quantum algorithm for ground-state preparation [4.921552273745794]
ハミルトン系の基底状態を作成するために,改良された反復量子アルゴリズムを提案する。
提案手法には,各イテレーションにおける成功確率の向上,測定精度に依存しないサンプリングの複雑さ,ゲートの複雑さの低減,およびアシラリー状態が十分に準備された場合の量子資源のみを必要とするという利点がある。
論文 参考訳(メタデータ) (2022-10-16T05:57:43Z) - Improved Quantum Algorithms for Fidelity Estimation [77.34726150561087]
証明可能な性能保証を伴う忠実度推定のための新しい,効率的な量子アルゴリズムを開発した。
我々のアルゴリズムは量子特異値変換のような高度な量子線型代数技術を用いる。
任意の非自明な定数加算精度に対する忠実度推定は一般に困難であることを示す。
論文 参考訳(メタデータ) (2022-03-30T02:02:16Z) - Reducing the cost of energy estimation in the variational quantum
eigensolver algorithm with robust amplitude estimation [50.591267188664666]
量子化学と材料は、量子コンピューティングの最も有望な応用の1つである。
これらの領域における産業関連問題とそれを解決する量子アルゴリズムとの整合性については、まだ多くの研究が続けられている。
論文 参考訳(メタデータ) (2022-03-14T16:51:36Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
生成モデリングは量子コンピュータにとって広く受け入れられている自然のユースケースである。
我々は,アルゴリズムの一般化性能を計測して,生成モデリングのための実用的な量子優位性を探索する,単純で曖昧な手法を構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
量子力学シミュレーションのための量子アルゴリズムは、伝統的に時間進化作用素のトロッター近似の実装に基づいている。
変分量子アルゴリズムは欠かせない代替手段となり、現在のハードウェア上での小規模なシミュレーションを可能にしている。
量子ゲートコストが明らかに削減されているにもかかわらず、現在の実装における変分法は量子的優位性をもたらすことはありそうにない。
論文 参考訳(メタデータ) (2021-08-09T18:00:05Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
本研究では,量子計測から直接最適化される関数の勾配を推定する問題について検討する。
マルチキュービットパラメトリック量子進化の勾配を推定するアルゴリズムを提供する数学的に正確な公式を導出する。
私たちのアルゴリズムは、利用可能な全ての量子ゲートがノイズである場合でも、いくつかの近似で機能し続けています。
論文 参考訳(メタデータ) (2020-05-20T18:24:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。