論文の概要: Implementation and Learning of Quantum Hidden Markov Models
- arxiv url: http://arxiv.org/abs/2212.03796v1
- Date: Wed, 7 Dec 2022 17:25:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-09 16:54:47.703101
- Title: Implementation and Learning of Quantum Hidden Markov Models
- Title(参考訳): 量子隠れマルコフモデルの実装と学習
- Authors: Vanio Markov, Vladimir Rastunkov, Amol Deshmukh, Daniel Fry, Charlee
Stefanski
- Abstract要約: 古典的なマルコフモデルよりも量子隠れマルコフモデルを使うことの利点を理解することに集中する。
本稿では,実用的で効率的な量子回路アンサッツとトレーニングアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Hidden Markov models are a powerful tool for learning and describing
sequential data. In this work, we focus on understanding the advantages of
using quantum hidden Markov models over classical counterparts. We propose a
practical, hardware efficient quantum circuit ansatz, as well as a training
algorithm. We compare results from executions of these dynamic circuits using
quantum simulators with results from IBM quantum hardware.
- Abstract(参考訳): 隠れマルコフモデルはシーケンシャルデータを学習し記述するための強力なツールである。
本研究では,古典的マルコフモデルよりも量子隠れマルコフモデルを用いることの利点を理解することに注力する。
本稿では,実用的でハードウェア効率のよい量子回路 ansatz とトレーニングアルゴリズムを提案する。
量子シミュレータを用いたこれらの動的回路の実行結果とIBM量子ハードウェアの結果を比較した。
関連論文リスト
- Application of Langevin Dynamics to Advance the Quantum Natural Gradient Optimization Algorithm [47.47843839099175]
近年,変分量子回路の最適化のためのQNGアルゴリズムが提案されている。
本研究では、この離散時間解が一般化形式を与えることを示すために、QNG力を持つランゲヴィン方程式を用いる。
論文 参考訳(メタデータ) (2024-09-03T15:21:16Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum Natural Stochastic Pairwise Coordinate Descent [6.187270874122921]
近年,変分量子アルゴリズム(VQA)による量子機械学習が注目されている。
本稿では,2QNSCD最適化法を提案する。
ゲート複雑性を持つ量子回路をパラメータ化量子回路と単発量子計測の2倍の精度で用いた,新しい計量テンソルの疎い非バイアス推定器を開発した。
論文 参考訳(メタデータ) (2024-07-18T18:57:29Z) - Symmetry enhanced variational quantum imaginary time evolution [1.6872254218310017]
我々は、ハミルトニアンの局所性と対称性に応じてパラメータ化量子回路を構築するためのガイダンスを提供する。
本手法は量子系のユニタリ・アンチ・ユニタリ対称性の実装に利用できる。
数値的な結果から,対称性向上回路は文献において頻繁に使用されるパラメトリゼーション回路よりも優れていたことが確認された。
論文 参考訳(メタデータ) (2023-07-25T16:00:34Z) - Efficient estimation of trainability for variational quantum circuits [43.028111013960206]
変動量子回路のコスト関数とその分散を効率よく計算する方法を見出した。
この方法は、変分量子回路のトレーニング容易性を証明し、バレンプラトー問題を克服できる設計戦略を探索するために用いられる。
論文 参考訳(メタデータ) (2023-02-09T14:05:18Z) - A self-consistent field approach for the variational quantum
eigensolver: orbital optimization goes adaptive [52.77024349608834]
適応微分組立問題集合型アンザッツ変分固有解法(ADAPTVQE)における自己一貫したフィールドアプローチ(SCF)を提案する。
このフレームワークは、短期量子コンピュータ上の化学系の効率的な量子シミュレーションに使用される。
論文 参考訳(メタデータ) (2022-12-21T23:15:17Z) - Automatic and effective discovery of quantum kernels [43.702574335089736]
量子コンピューティングは、カーネルマシンが量子カーネルを利用してデータ間の類似度を表現できるようにすることで、機械学習モデルを強化することができる。
本稿では,ニューラルアーキテクチャ検索やAutoMLと同じような最適化手法を用いて,異なるアプローチを提案する。
その結果、高エネルギー物理問題に対する我々のアプローチを検証した結果、最良のシナリオでは、手動設計のアプローチに関して、テストの精度を一致または改善できることが示された。
論文 参考訳(メタデータ) (2022-09-22T16:42:14Z) - Protocols for Trainable and Differentiable Quantum Generative Modelling [21.24186888129542]
微分可能量子回路(DQC)としての確率分布の学習手法を提案する。
我々はDQCベースのモデルのトレーニングを行い、そこでデータは位相特徴写像で潜在空間にエンコードされ、次に変動量子回路が続く。
これにより、シングルショットの読み出しを使ってパラメタライズドディストリビューションからの高速サンプリングが可能になる。
論文 参考訳(メタデータ) (2022-02-16T18:55:48Z) - FLIP: A flexible initializer for arbitrarily-sized parametrized quantum
circuits [105.54048699217668]
任意サイズのパラメタライズド量子回路のためのFLexible Initializerを提案する。
FLIPは任意の種類のPQCに適用することができ、初期パラメータの一般的なセットに頼る代わりに、成功したパラメータの構造を学ぶように調整されている。
本稿では, 3つのシナリオにおいてFLIPを用いることの利点を述べる。不毛な高原における問題ファミリ, 最大カット問題インスタンスを解くPQCトレーニング, 1次元フェルミ-ハッバードモデルの基底状態エネルギーを求めるPQCトレーニングである。
論文 参考訳(メタデータ) (2021-03-15T17:38:33Z) - Chaos and Complexity from Quantum Neural Network: A study with Diffusion
Metric in Machine Learning [0.0]
量子ニューラルネットワーク(QNN)の機械学習力学における量子カオス現象と複雑性について検討する。
統計的および微分幾何学的手法を用いてQNNの学習理論を研究する。
論文 参考訳(メタデータ) (2020-11-16T10:41:47Z) - Measuring Analytic Gradients of General Quantum Evolution with the
Stochastic Parameter Shift Rule [0.0]
本研究では,量子計測から直接最適化される関数の勾配を推定する問題について検討する。
マルチキュービットパラメトリック量子進化の勾配を推定するアルゴリズムを提供する数学的に正確な公式を導出する。
私たちのアルゴリズムは、利用可能な全ての量子ゲートがノイズである場合でも、いくつかの近似で機能し続けています。
論文 参考訳(メタデータ) (2020-05-20T18:24:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。