論文の概要: Error-Aware B-PINNs: Improving Uncertainty Quantification in Bayesian
Physics-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2212.06965v1
- Date: Wed, 14 Dec 2022 01:15:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-15 15:19:59.315969
- Title: Error-Aware B-PINNs: Improving Uncertainty Quantification in Bayesian
Physics-Informed Neural Networks
- Title(参考訳): 誤りを意識したB-PINN:ベイズ物理学インフォームドニューラルネットワークの不確かさの定量化
- Authors: Olga Graf, Pablo Flores, Pavlos Protopapas, Karim Pichara
- Abstract要約: 不確実性定量化(UQ)は、PINNの文脈で現れ始めている。
本稿では,B-PINNと未知の真の解との相違を考慮したベイズPINN(B-PINN)におけるUQフレームワークを提案する。
線形力学系におけるPINNの誤差境界に関する最近の結果を利用して、線形ODEのクラスにおける予測の不確かさを実証する。
- 参考スコア(独自算出の注目度): 2.569295887779268
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-Informed Neural Networks (PINNs) are gaining popularity as a method
for solving differential equations. While being more feasible in some contexts
than the classical numerical techniques, PINNs still lack credibility. A remedy
for that can be found in Uncertainty Quantification (UQ) which is just
beginning to emerge in the context of PINNs. Assessing how well the trained
PINN complies with imposed differential equation is the key to tackling
uncertainty, yet there is lack of comprehensive methodology for this task. We
propose a framework for UQ in Bayesian PINNs (B-PINNs) that incorporates the
discrepancy between the B-PINN solution and the unknown true solution. We
exploit recent results on error bounds for PINNs on linear dynamical systems
and demonstrate the predictive uncertainty on a class of linear ODEs.
- Abstract(参考訳): 微分方程式の解法として,物理情報ニューラルネットワーク (PINN) が普及している。
いくつかの文脈では古典的な数値手法よりも実現可能であるが、PINNは信頼性に欠ける。
その対策は、PINNのコンテキストで現れ始めたばかりのUncertainty Quantification (UQ)で見ることができる。
トレーニングされたPINNが課された微分方程式にどの程度うまく準拠しているかを評価することは、不確実性に取り組む鍵であるが、このタスクには包括的な方法論がない。
本稿では,B-PINNと未知の真の解との相違を考慮したベイズPINN(B-PINN)におけるUQフレームワークを提案する。
線形力学系におけるPINNの誤差境界に関する最近の結果を利用して、線形ODEのクラスにおける予測の不確実性を示す。
関連論文リスト
- Improving PINNs By Algebraic Inclusion of Boundary and Initial Conditions [0.1874930567916036]
AI for Science」は、AI技術を用いた基本的な科学的問題を解決することを目的としている。
本研究では、トレーニング対象のモデルを単にニューラルネットワークから非線形変換に変更する可能性について検討する。
これにより、損失関数の項数は標準のPINN損失よりも減少する。
論文 参考訳(メタデータ) (2024-07-30T11:19:48Z) - Conformalized Physics-Informed Neural Networks [0.8437187555622164]
本稿では,C-PINN(Conformalized PINN)を導入し,PINNの不確実性を定量化する。
C-PINNは、共形予測の枠組みを利用して、PINNの不確実性を定量化する。
論文 参考訳(メタデータ) (2024-05-13T18:45:25Z) - The #DNN-Verification Problem: Counting Unsafe Inputs for Deep Neural
Networks [94.63547069706459]
#DNN-Verification問題は、DNNの入力構成の数を数えることによって安全性に反する結果となる。
違反の正確な数を返す新しい手法を提案する。
安全クリティカルなベンチマークのセットに関する実験結果を示す。
論文 参考訳(メタデータ) (2023-01-17T18:32:01Z) - Failure-informed adaptive sampling for PINNs [5.723850818203907]
物理学インフォームドニューラルネットワーク(PINN)は、幅広い領域でPDEを解決する効果的な手法として登場した。
しかし、最近の研究では、異なるサンプリング手順でPINNの性能が劇的に変化することが示されている。
本稿では,信頼度分析の視点から,故障インフォームドPINNという適応的手法を提案する。
論文 参考訳(メタデータ) (2022-10-01T13:34:41Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Competitive Physics Informed Networks [8.724433470897763]
PINNはニューラルネットワークとして表現することで偏微分方程式(PDE)を解く。
我々は、この制限を克服するために、競争的PINN(CPINN)と呼ばれる敵のアプローチを定式化し、検証する。
CPINNは差別者を訓練し、PINNの誤りを予測する。
数値実験により、競争勾配降下で訓練されたCPINNは、アダムや勾配降下で訓練されたPINNよりも2桁小さくできることが示された。
論文 参考訳(メタデータ) (2022-04-23T22:01:37Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
我々は、PINNを正しい解に収束させるため、解区間を徐々に拡大することを提案する。
すべてのアンサンブルのメンバーは、観測されたデータの近くで同じ解に収束する。
提案手法は, 得られた解の精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:05:34Z) - Certified machine learning: A posteriori error estimation for
physics-informed neural networks [0.0]
PINNは、より小さなトレーニングセットに対して堅牢であることが知られ、より優れた一般化問題を導出し、より高速にトレーニングすることができる。
純粋にデータ駆動型ニューラルネットワークと比較してPINNを使うことは、トレーニング性能に好都合であるだけでなく、近似されたソリューションの品質に関する重要な情報を抽出できることを示す。
論文 参考訳(メタデータ) (2022-03-31T14:23:04Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Frequentist Uncertainty in Recurrent Neural Networks via Blockwise
Influence Functions [121.10450359856242]
リカレントニューラルネットワーク(RNN)は、シーケンシャルおよび時系列データのモデリングに有効である。
RNNにおける既存の不確実性定量化のアプローチは、主にベイズ法に基づいている。
a)モデルトレーニングに干渉せず、その精度を損なうことなく、(b)任意のRNNアーキテクチャに適用し、(c)推定不確かさ間隔に関する理論的カバレッジ保証を提供する。
論文 参考訳(メタデータ) (2020-06-20T22:45:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。