論文の概要: Conformalized Physics-Informed Neural Networks
- arxiv url: http://arxiv.org/abs/2405.08111v1
- Date: Mon, 13 May 2024 18:45:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-15 15:56:55.049738
- Title: Conformalized Physics-Informed Neural Networks
- Title(参考訳): 等角化物理インフォームドニューラルネットワーク
- Authors: Lena Podina, Mahdi Torabi Rad, Mohammad Kohandel,
- Abstract要約: 本稿では,C-PINN(Conformalized PINN)を導入し,PINNの不確実性を定量化する。
C-PINNは、共形予測の枠組みを利用して、PINNの不確実性を定量化する。
- 参考スコア(独自算出の注目度): 0.8437187555622164
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Physics-informed neural networks (PINNs) are an influential method of solving differential equations and estimating their parameters given data. However, since they make use of neural networks, they provide only a point estimate of differential equation parameters, as well as the solution at any given point, without any measure of uncertainty. Ensemble and Bayesian methods have been previously applied to quantify the uncertainty of PINNs, but these methods may require making strong assumptions on the data-generating process, and can be computationally expensive. Here, we introduce Conformalized PINNs (C-PINNs) that, without making any additional assumptions, utilize the framework of conformal prediction to quantify the uncertainty of PINNs by providing intervals that have finite-sample, distribution-free statistical validity.
- Abstract(参考訳): 物理インフォームドニューラルネットワーク(PINN)は、微分方程式を解き、そのパラメータを推定する上で重要な手法である。
しかし、ニューラルネットワークを利用するため、偏微分方程式パラメータの点推定と、任意の点における解のみを不確実性の尺度なしで提供する。
アンサンブル法とベイズ法は以前、PINNの不確かさの定量化に応用されてきたが、これらの手法はデータ生成過程に強い仮定を必要とする可能性があり、計算コストがかかる。
本稿では,C-PINN (Conformalized PINNs) を導入し,追加の仮定を伴わずに,PINNの不確かさを定量化するために適合予測の枠組みを利用する。
関連論文リスト
- RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法として広く応用されている。
本稿では,地域最適化としての新たな訓練パラダイムを提案し,理論的に検討する。
実践的なトレーニングアルゴリズムであるRerea Optimized PINN(RoPINN)は、この新しいパラダイムからシームレスに派生している。
論文 参考訳(メタデータ) (2024-05-23T09:45:57Z) - Learning solutions of parametric Navier-Stokes with physics-informed
neural networks [0.3989223013441816]
パラメトリックナビエ・ストークス方程式(NSE)の解関数の学習にPIN(Palformed-Informed Neural Networks)を利用する。
パラメータのパラメータを座標とともにPINの入力とみなし、パラメータのインスタンスに対するパラメトリックPDESの数値解に基づいてPINを訓練する。
提案手法は, 解関数を学習するPINNモデルを最適化し, 流量予測が質量・運動量の保存則と一致していることを確認する。
論文 参考訳(メタデータ) (2024-02-05T16:19:53Z) - Correcting model misspecification in physics-informed neural networks
(PINNs) [2.07180164747172]
本稿では,制御方程式の発見のために,PINNにおいて不特定な物理モデルを修正するための一般的な手法を提案する。
我々は、不完全モデルと観測データとの差をモデル化するために、他のディープニューラルネットワーク(DNN)を使用します。
提案手法は, 物理化学的, 生物学的プロセスがよく理解されていない問題における支配方程式の発見に, PINNの応用を拡大すると考えられる。
論文 参考訳(メタデータ) (2023-10-16T19:25:52Z) - Non-Parametric Learning of Stochastic Differential Equations with Non-asymptotic Fast Rates of Convergence [65.63201894457404]
非線形微分方程式のドリフトと拡散係数の同定のための新しい非パラメトリック学習パラダイムを提案する。
鍵となる考え方は、基本的には、対応するフォッカー・プランク方程式のRKHSに基づく近似をそのような観測に適合させることである。
論文 参考訳(メタデータ) (2023-05-24T20:43:47Z) - Error-Aware B-PINNs: Improving Uncertainty Quantification in Bayesian
Physics-Informed Neural Networks [2.569295887779268]
不確実性定量化(UQ)は、PINNの文脈で現れ始めている。
本稿では,B-PINNと未知の真の解との相違を考慮したベイズPINN(B-PINN)におけるUQフレームワークを提案する。
線形力学系におけるPINNの誤差境界に関する最近の結果を利用して、線形ODEのクラスにおける予測の不確かさを実証する。
論文 参考訳(メタデータ) (2022-12-14T01:15:26Z) - Variational Neural Networks [88.24021148516319]
本稿では,変分ニューラルネットワーク(VNN)と呼ばれるニューラルネットワークにおける不確実性推定手法を提案する。
VNNは、学習可能なサブレイヤで入力を変換することで、レイヤの出力分布のパラメータを生成する。
不確実性評価実験において、VNNはモンテカルロ・ドロップアウトやベイズ・バイ・バックプロパゲーション法よりも優れた不確実性が得られることを示す。
論文 参考訳(メタデータ) (2022-07-04T15:41:02Z) - NUQ: Nonparametric Uncertainty Quantification for Deterministic Neural
Networks [151.03112356092575]
本研究では,Nadaraya-Watson の条件付きラベル分布の非パラメトリック推定に基づく分類器の予測の不確かさの測定方法を示す。
種々の実世界の画像データセットにおける不確実性推定タスクにおいて,本手法の強い性能を示す。
論文 参考訳(メタデータ) (2022-02-07T12:30:45Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Interval and fuzzy physics-informed neural networks for uncertain fields [0.0]
ファジィ場と間隔場を含む偏微分方程式は伝統的に有限要素法を用いて解かれる。
本研究では、物理インフォームドニューラルネットワーク(PINN)を用いて、間隔とファジィ偏微分方程式を解く。
その結果、間隔物理学インフォームドニューラルネットワーク(iPINN)とファジィ物理インフォームドニューラルネットワーク(fPINN)と呼ばれるネットワーク構造が、有望な結果を示している。
論文 参考訳(メタデータ) (2021-06-18T21:06:42Z) - Frequentist Uncertainty in Recurrent Neural Networks via Blockwise
Influence Functions [121.10450359856242]
リカレントニューラルネットワーク(RNN)は、シーケンシャルおよび時系列データのモデリングに有効である。
RNNにおける既存の不確実性定量化のアプローチは、主にベイズ法に基づいている。
a)モデルトレーニングに干渉せず、その精度を損なうことなく、(b)任意のRNNアーキテクチャに適用し、(c)推定不確かさ間隔に関する理論的カバレッジ保証を提供する。
論文 参考訳(メタデータ) (2020-06-20T22:45:32Z) - Optimal Uncertainty-guided Neural Network Training [14.768115786212187]
最適PIを構築するためにNNを開発するために,高度にカスタマイズ可能なスムーズなコスト関数を提案する。
提案手法は,PIの品質の変動を低減し,トレーニングを加速し,収束確率を99.2%から99.8%に向上させる。
論文 参考訳(メタデータ) (2019-12-30T00:03:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。