論文の概要: Operator Learning Framework for Digital Twin and Complex Engineering
Systems
- arxiv url: http://arxiv.org/abs/2301.06701v2
- Date: Wed, 18 Jan 2023 07:05:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-19 12:03:10.969889
- Title: Operator Learning Framework for Digital Twin and Complex Engineering
Systems
- Title(参考訳): デジタル双対・複雑工学システムのための演算子学習フレームワーク
- Authors: Kazuma Kobayashi, James Daniell, Syed B. Alam
- Abstract要約: ニューラル演算子ネットワーク(英: Neural Operator Networks、ONets)は、偏微分方程式(PDE)の解を近似するための「より高速なサロゲート」として開発された機械学習アルゴリズムである。
オネットはユニバーサル近似定理を用いて有限次元の入力を分岐トランクアーキテクチャを用いて無限次元空間にマッピングする。
1次元常微分方程式 (ODE) や一般拡散系, 対流拡散系 (Burger) など, 演算子近似のためのオネットを用いた3つのテストケースの評価を行った。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With modern computational advancements and statistical analysis methods,
machine learning algorithms have become a vital part of engineering modeling.
Neural Operator Networks (ONets) is an emerging machine learning algorithm as a
"faster surrogate" for approximating solutions to partial differential
equations (PDEs) due to their ability to approximate mathematical operators
versus the direct approximation of Neural Networks (NN). ONets use the
Universal Approximation Theorem to map finite-dimensional inputs to
infinite-dimensional space using the branch-trunk architecture, which encodes
domain and feature information separately before using a dot product to combine
the information. ONets are expected to occupy a vital niche for surrogate
modeling in physical systems and Digital Twin (DT) development. Three test
cases are evaluated using ONets for operator approximation, including a
1-dimensional ordinary differential equations (ODE), general diffusion system,
and convection-diffusion (Burger) system. Solutions for ODE and diffusion
systems yield accurate and reliable results (R2>0.95), while solutions for
Burger systems need further refinement in the ONet algorithm.
- Abstract(参考訳): 現代の計算技術の進歩と統計解析手法により、機械学習アルゴリズムはエンジニアリングモデリングの重要な部分となっている。
ニューラルネットワーク(neural operator networks, onets)は、偏微分方程式(pdes)に対する解を近似するための"より高速なサロゲート(faster surrogate)"としての新たな機械学習アルゴリズムである。
onets は有限次元入力を無限次元空間に写像する普遍近似定理(universal approximation theorem)を用いる。
onetsは物理システムとデジタルツイン(dt)開発におけるサロゲートモデリングの重要なニッチを占めることが期待されている。
1次元常微分方程式 (ODE) や一般拡散系, 対流拡散系 (Burger) など, 演算子近似のためのオネットを用いた3つのテストケースの評価を行った。
ODEと拡散システムの解は正確で信頼性の高い結果(R2>0.95)を得る一方、バーガーシステムの解はONetアルゴリズムのさらなる改良が必要である。
関連論文リスト
- DimOL: Dimensional Awareness as A New 'Dimension' in Operator Learning [63.5925701087252]
本稿では,DimOL(Dimension-aware Operator Learning)を紹介し,次元解析から洞察を得る。
DimOLを実装するために,FNOおよびTransformerベースのPDEソルバにシームレスに統合可能なProdLayerを提案する。
経験的に、DimOLモデルはPDEデータセット内で最大48%のパフォーマンス向上を達成する。
論文 参考訳(メタデータ) (2024-10-08T10:48:50Z) - Neural Operators with Localized Integral and Differential Kernels [77.76991758980003]
本稿では,2つのフレームワークで局所的な特徴をキャプチャできる演算子学習の原理的アプローチを提案する。
我々はCNNのカーネル値の適切なスケーリングの下で微分演算子を得ることを示す。
局所積分演算子を得るには、離散連続的畳み込みに基づくカーネルの適切な基底表現を利用する。
論文 参考訳(メタデータ) (2024-02-26T18:59:31Z) - Operator Learning: Algorithms and Analysis [8.305111048568737]
オペレータ学習(Operator learning)は、機械学習から、関数のバナッハ空間間の近似演算子へのアイデアの適用を指す。
このレビューは、有限次元ユークリッド空間上で定義される関数の近似におけるディープニューラルネットワークの成功に基づいて構築されたニューラル演算子に焦点を当てる。
論文 参考訳(メタデータ) (2024-02-24T04:40:27Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Convolutional Neural Operators for robust and accurate learning of PDEs [11.562748612983956]
本稿では、入力や出力として関数を処理する畳み込みニューラルネットワークの新しい適応法を提案する。
結果として生じるアーキテクチャは、畳み込みニューラル演算子(CNO)と呼ばれる。
普遍性定理を証明し、CNOが PDE で生じる作用素を所望の精度で近似できることを示す。
論文 参考訳(メタデータ) (2023-02-02T15:54:45Z) - Reliable extrapolation of deep neural operators informed by physics or
sparse observations [2.887258133992338]
ディープニューラルネットワークは、ディープニューラルネットワークを介して無限次元関数空間間の非線形マッピングを学習することができる。
DeepONetsは科学と工学の新しいシミュレーションパラダイムを提供する。
本稿では,外挿下での安全な予測を保証する5つの信頼性学習手法を提案する。
論文 参考訳(メタデータ) (2022-12-13T03:02:46Z) - Enhanced DeepONet for Modeling Partial Differential Operators
Considering Multiple Input Functions [5.819397109258169]
偏微分方程式(PDE)に対する一般非線形連続作用素をモデル化するディープネットワーク演算子(DeepONet)が提案された。
既存のDeepONetは1つの入力関数しか受け付けないため、アプリケーションに制限がある。
本稿では、2つの入力関数を2つの分枝サブネットワークで表現する拡張DeepONetまたはEDeepONet高レベルニューラルネットワーク構造を提案する。
2つの偏微分方程式の例をモデル化した結果、提案した拡張DeepONetは約7X-17Xであり、完全に連結されたニューラルネットワークよりも約1桁精度が高いことがわかった。
論文 参考訳(メタデータ) (2022-02-17T23:58:23Z) - Multigoal-oriented dual-weighted-residual error estimation using deep
neural networks [0.0]
ディープラーニングは、関数を近似する柔軟性の高い強力なツールだと考えられている。
提案手法は,誤差の局所化に付随する問題を解く後続誤差推定法に基づく。
複数のゴール関数に対する後方誤差推定を得るために,効率的で実装が容易なアルゴリズムを開発した。
論文 参考訳(メタデータ) (2021-12-21T16:59:44Z) - Combining Differentiable PDE Solvers and Graph Neural Networks for Fluid
Flow Prediction [79.81193813215872]
我々は,従来のグラフ畳み込みネットワークと,ネットワーク内部に組込み可能な流体力学シミュレータを組み合わせたハイブリッド(グラフ)ニューラルネットワークを開発した。
ニューラルネットワークのCFD予測の大幅な高速化により,新たな状況に十分対応できることが示される。
論文 参考訳(メタデータ) (2020-07-08T21:23:19Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。