論文の概要: Linguistic Analysis using Paninian System of Sounds and Finite State
Machines
- arxiv url: http://arxiv.org/abs/2301.12463v1
- Date: Sun, 29 Jan 2023 15:22:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-31 16:56:41.331710
- Title: Linguistic Analysis using Paninian System of Sounds and Finite State
Machines
- Title(参考訳): 音のパニン系と有限状態機械を用いた言語解析
- Authors: Shreekanth M Prabhu and Abhisek Midye
- Abstract要約: 音声言語の研究は、音韻学、形態学、文法を含む。
言語は根語、屈折言語、幹語に分類される。
これらすべての要因は、共通性と類似性を持つ語彙の形成と、言語間での区別と微妙な相違につながります。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The study of spoken languages comprises phonology, morphology, and grammar.
Analysis of a language can be based on its syntax, semantics, and pragmatics.
The languages can be classified as root languages, inflectional languages, and
stem languages. All these factors lead to the formation of vocabulary which has
commonality/similarity as well as distinct and subtle differences across
languages. In this paper, we make use of Paninian system of sounds to construct
a phonetic map and then words are represented as state transitions on the
phonetic map. Each group of related words that cut across languages is
represented by a m-language (morphological language). Morphological Finite
Automata (MFA) are defined that accept the words belonging to a given
m-language. This exercise can enable us to better understand the
inter-relationships between words in spoken languages in both language-agnostic
and language-cognizant manner.
- Abstract(参考訳): 音声言語の研究は、音韻学、形態学、文法を含む。
言語の分析は、その構文、意味論、実践論に基づくことができる。
これらの言語はルート言語、インフレクション言語、stem言語に分類される。
これらすべての要因は、言語間で異なる微妙な違いだけでなく、共通性と類似性を持つ語彙の形成に繋がる。
本稿では,パニアン系を用いた音声マップの構築を行い,その状態遷移として単語を表現した。
言語を横断する関連する単語群は、それぞれm言語(形態言語)で表される。
形態的有限オートマタ(MFA)は、与えられたm言語に属する単語を受け入れる。
この演習により、言語非依存と言語認識の両方の方法で、音声言語における単語間の相互関係をよりよく理解することができる。
関連論文リスト
- A Computational Model for the Assessment of Mutual Intelligibility Among
Closely Related Languages [1.5773159234875098]
密接に関連する言語は、ある言語の話者が積極的に学習することなく他の言語の話者を理解することができる言語類似性を示す。
相互の知性は程度によって異なり、典型的には精神言語実験でテストされる。
本稿では,人間による言語学習の認知過程を近似するために,線形識別学習システムを用いたコンピュータ支援手法を提案する。
論文 参考訳(メタデータ) (2024-02-05T11:32:13Z) - Multilingual context-based pronunciation learning for Text-to-Speech [13.941800219395757]
音声情報と言語知識は、テキスト音声(TTS)フロントエンドの重要な構成要素である。
複数言語で統一されたフロントエンドシステムで発音関連タスクに対処し、通常は別個のモジュールで処理する。
多言語モデルは言語やタスク間で競合するが、等価なモノリンガル解と比較するといくつかのトレードオフが存在する。
論文 参考訳(メタデータ) (2023-07-31T14:29:06Z) - From Word Models to World Models: Translating from Natural Language to
the Probabilistic Language of Thought [124.40905824051079]
言語インフォームド・シンキングのための計算フレームワークである「構成」を合理的に提案する。
我々は、自然言語から確率論的思考言語への文脈感応的なマッピングとして、言語の意味を定式化する。
LLMは、現実的に適切な言語的意味をキャプチャする文脈依存翻訳を生成することができることを示す。
認知的なモチベーションを持つシンボリックモジュールを統合するために、我々のフレームワークを拡張します。
論文 参考訳(メタデータ) (2023-06-22T05:14:00Z) - Improve Bilingual TTS Using Dynamic Language and Phonology Embedding [10.244215079409797]
本稿では,中国語の単言語話者からより標準の英語音声を取得するために,マンダリン・イングリッシュ・TSシステムを構築した。
言語と音韻の動的強度を捉えるための埋め込み強度変調器を特別に設計する。
論文 参考訳(メタデータ) (2022-12-07T03:46:18Z) - AUTOLEX: An Automatic Framework for Linguistic Exploration [93.89709486642666]
本稿では言語学者による言語現象の簡潔な記述の発見と抽出を容易にするための自動フレームワークを提案する。
具体的には、この枠組みを用いて、形態的一致、ケースマーキング、単語順序の3つの現象について記述を抽出する。
本研究では,言語専門家の助けを借りて記述を評価し,人間の評価が不可能な場合に自動評価を行う手法を提案する。
論文 参考訳(メタデータ) (2022-03-25T20:37:30Z) - Discovering Representation Sprachbund For Multilingual Pre-Training [139.05668687865688]
多言語事前学習モデルから言語表現を生成し、言語分析を行う。
すべての対象言語を複数のグループにクラスタリングし、表現のスプラックバンドとして各グループに名前を付ける。
言語間ベンチマークで実験を行い、強いベースラインと比較して大幅な改善が達成された。
論文 参考訳(メタデータ) (2021-09-01T09:32:06Z) - Differentiable Allophone Graphs for Language-Universal Speech
Recognition [77.2981317283029]
言語ユニバーサル音声認識システムを構築するには、言語間で共有可能な音声の音韻単位を生成する必要がある。
本稿では,音素転写と音声-音素マッピングのみから,音素レベルの監視を導出するための一般的な枠組みを提案する。
我々は,各言語に対する可読確率的音声-音素マッピングを用いた普遍的な電話ベース音声認識モデルを構築した。
論文 参考訳(メタデータ) (2021-07-24T15:09:32Z) - Rediscovering the Slavic Continuum in Representations Emerging from
Neural Models of Spoken Language Identification [16.369477141866405]
音声信号におけるスラヴ語識別のためのニューラルモデルを提案する。
本稿では,言語関連性の客観的尺度を反映しているかどうかを調査するために,その創発的表現を分析した。
論文 参考訳(メタデータ) (2020-10-22T18:18:19Z) - Neural Polysynthetic Language Modelling [15.257624461339867]
高リソース言語では、一般的なアプローチは、共通の根の形態的固有の変種を、完全に独立した単語タイプとして扱うことである。
これは、根あたりの屈折が限られており、大多数が十分な大きさのコーパスに現れると仮定する。
4つの多義語に対する言語モデリング,機械翻訳,テキスト予測の現状について検討する。
論文 参考訳(メタデータ) (2020-05-11T22:57:04Z) - Linguistic Typology Features from Text: Inferring the Sparse Features of
World Atlas of Language Structures [73.06435180872293]
我々は、バイト埋め込みと畳み込み層に基づく繰り返しニューラルネットワーク予測器を構築する。
様々な言語型の特徴を確実に予測できることを示す。
論文 参考訳(メタデータ) (2020-04-30T21:00:53Z) - Bridging Linguistic Typology and Multilingual Machine Translation with
Multi-View Language Representations [83.27475281544868]
特異ベクトル標準相関解析を用いて、各情報源からどのような情報が誘導されるかを調べる。
我々の表現は類型学を組み込み、言語関係と相関関係を強化する。
次に、多言語機械翻訳のための多視点言語ベクトル空間を利用して、競合する全体的な翻訳精度を実現する。
論文 参考訳(メタデータ) (2020-04-30T16:25:39Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。