論文の概要: Recurrences reveal shared causal drivers of complex time series
- arxiv url: http://arxiv.org/abs/2301.13516v3
- Date: Mon, 02 Dec 2024 07:07:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-03 16:54:21.628701
- Title: Recurrences reveal shared causal drivers of complex time series
- Title(参考訳): 複雑時系列における因果関係の共有化
- Authors: William Gilpin,
- Abstract要約: 本研究は,複数時系列にまたがる同時繰り返し現象により,共有された未観測駆動信号の構造が明らかになることを示す。
本稿では,ガラスのような構造を持つ反復グラフを反復的に構築することにより,因果ドライバーを再構成する物理に基づく教師なし学習アルゴリズムを提案する。
本手法は, 生態学, ゲノム学, 流体力学, 生理学にまたがる多様な実験データセットから因果的ドライバを抽出する能力を示す。
- 参考スコア(独自算出の注目度): 7.6146285961466
- License:
- Abstract: Unmeasured causal forces influence diverse experimental time series, such as the transcription factors that regulate genes, or the descending neurons that steer motor circuits. Combining the theory of skew-product dynamical systems with topological data analysis, we show that simultaneous recurrence events across multiple time series reveal the structure of their shared unobserved driving signal. We introduce a physics-based unsupervised learning algorithm that reconstructs causal drivers by iteratively building a recurrence graph with glass-like structure. As the amount of data increases, a percolation transition on this graph leads to weak ergodicity breaking for random walks -- revealing the shared driver's dynamics, even from strongly-corrupted measurements. We relate reconstruction accuracy to the rate of information transfer from a chaotic driver to the response systems, and we find that effective reconstruction proceeds through gradual approximation of the driver's dynamical attractor. Through extensive benchmarks against classical signal processing and machine learning techniques, we demonstrate our method's ability to extract causal drivers from diverse experimental datasets spanning ecology, genomics, fluid dynamics, and physiology.
- Abstract(参考訳): 非測定された因果力は、遺伝子を調節する転写因子や、ステアモーター回路を駆動する下降ニューロンなど、様々な実験的時系列に影響を及ぼす。
本研究では,スキュー生成力学系の理論とトポロジカルデータ解析を組み合わせることで,複数の時系列にまたがる同時繰り返し現象が共有された未観測駆動信号の構造を明らかにした。
本稿では,ガラスのような構造を持つ反復グラフを反復的に構築することにより,因果ドライバーを再構成する物理に基づく教師なし学習アルゴリズムを提案する。
データ量が増加するにつれて、このグラフのパーコレーション遷移によって、ランダムウォークのエルゴディディティが弱くなる。
カオス運転者から応答システムへの情報伝達率と再現精度を関連付けるとともに,ドライバの動的アトラクタの段階的近似により,効果的な再構成が進行することを示す。
従来の信号処理や機械学習技術に対する広範なベンチマークを通じて、生態学、ゲノム学、流体力学、生理学にまたがる様々な実験データセットから因果ドライバを抽出する能力を実証した。
関連論文リスト
- A Differential Smoothness-based Compact-Dynamic Graph Convolutional Network for Spatiotemporal Signal Recovery [9.369246678101048]
本稿では、時間的信号回復のためのコンパクト・フォールド・コングラフ・ネットワーク(CDCN)を提案する。
実世界のデータセットの実験では、CDCNは時間的信号回復の最先端モデルよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-08-06T06:42:53Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
本稿では、ディープラーニングフレームワークと互換性があり、スケーラブルな、生理学的にインスパイアされた音声認識アーキテクチャを提案する。
本研究では, 終末から終末までの勾配降下訓練が, 中枢スパイク神経ネットワークにおける神経振動の出現に繋がることを示す。
本研究は, スパイク周波数適応やリカレント接続などのフィードバック機構が, 認識性能を向上させるために, 神経活動の調節と同期に重要な役割を担っていることを明らかにする。
論文 参考訳(メタデータ) (2024-04-22T09:40:07Z) - AI-Lorenz: A physics-data-driven framework for black-box and gray-box
identification of chaotic systems with symbolic regression [2.07180164747172]
複雑な動的挙動をモデル化した数学的表現を学習するフレームワークを開発する。
私たちは、システムのダイナミクス、時間の変化率、モデル用語の欠如を学ぶために、小さなニューラルネットワークをトレーニングします。
これにより、動的挙動の将来的な進化を予測することができる。
論文 参考訳(メタデータ) (2023-12-21T18:58:41Z) - Let's do the time-warp-attend: Learning topological invariants of dynamical systems [3.9735602856280132]
本稿では、動的状態の分類と分岐境界の特徴付けのための、データ駆動型、物理的にインフォームドされたディープラーニングフレームワークを提案する。
超臨界ホップ分岐のパラダイム的ケースに着目し、様々な応用の周期的ダイナミクスをモデル化する。
本手法は, 広範囲な力学系の定性的・長期的挙動に関する貴重な知見を提供し, 大規模物理・生物系における分岐や破滅的な遷移を検出する。
論文 参考訳(メタデータ) (2023-12-14T18:57:16Z) - Engineering Transport via Collisional Noise: a Toolbox for Biology
Systems [44.99833362998488]
衝突音の存在下での一般XXZモデルについて検討し、標準マルコフの定式化を超えて環境を記述する。
結果は、ノイズや温暖な環境下での量子輸送を理解するための重要な構成要素の例である。
論文 参考訳(メタデータ) (2023-11-15T12:55:28Z) - Neural-network solutions to stochastic reaction networks [7.021105583098606]
本稿では,化学マスター方程式の解法として,変分自己回帰ネットワークを用いた機械学習手法を提案する。
提案手法は, 種数状態空間における結合確率分布の時間的変化を追跡する。
遺伝的トグルスイッチと初期生命自己複製器において、時間とともに確率分布を正確に生成することを示した。
論文 参考訳(メタデータ) (2022-09-29T07:27:59Z) - Reminiscence of classical chaos in driven transmons [117.851325578242]
共振器外ドライブでさえ、トランスモンスペクトルの構造に強い変化をもたらし、その大部分がカオスであることを示す。
その結果、カオス誘起量子分解効果の出現を特徴付ける光子数しきい値が導かれる。
論文 参考訳(メタデータ) (2022-07-19T16:04:46Z) - Learning Fine Scale Dynamics from Coarse Observations via Inner
Recurrence [0.0]
最近の研究は、ディープニューラルネットワーク(DNN)による未知のシステムの進化に関するデータ駆動学習に焦点を当てている。
本稿では,このような粗い観測データから微細な力学を学習するための計算手法を提案する。
論文 参考訳(メタデータ) (2022-06-03T20:28:52Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - A Predictive Coding Account for Chaotic Itinerancy [68.8204255655161]
予測符号化を実装したリカレントニューラルネットワークが,入力雑音の存在下でカオス的反復性に類似したニューラルトラジェクトリを生成する方法を示す。
本モデルを用いて,無作為かつ非依存なトラジェクタスイッチングトラジェクトリを生成する2つのシナリオを提案する。
論文 参考訳(メタデータ) (2021-06-16T16:48:14Z) - Consistency of mechanistic causal discovery in continuous-time using
Neural ODEs [85.7910042199734]
ダイナミカルシステムの研究において,連続時間における因果的発見を検討する。
本稿では,ニューラルネットワークを用いた因果探索アルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-05-06T08:48:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。