論文の概要: Self-Emotion-Mediated Exploration in Artificial Intelligence Mirrors: Findings from Cognitive Psychology
- arxiv url: http://arxiv.org/abs/2302.06615v2
- Date: Tue, 09 Sep 2025 13:27:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-09-10 14:38:26.459928
- Title: Self-Emotion-Mediated Exploration in Artificial Intelligence Mirrors: Findings from Cognitive Psychology
- Title(参考訳): 人工知能ミラーにおける自己感情を媒介とした探索 : 認知心理学からの発見
- Authors: Gustavo Assunção, Miguel Castelo-Branco, Paulo Menezes,
- Abstract要約: 本研究は,本質的な探索駆動を実現するための,人工エージェントの学習フレームワークを提案する。
データ分析は、人間の心理学的な研究に従って、プライドまたはサプライズを規定する。
結果: 国家と探検の因果関係はエージェントの大多数によって実証される。
- 参考スコア(独自算出の注目度): 0.08739101659113153
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Background: Exploration of the physical environment is an indispensable precursor to information acquisition and knowledge consolidation for living organisms. Yet, current artificial intelligence models lack these autonomy capabilities during training, hindering their adaptability. This work proposes a learning framework for artificial agents to obtain an intrinsic exploratory drive, based on epistemic and achievement emotions triggered during data observation. Methods: This study proposes a dual-module reinforcement framework, where data analysis scores dictate pride or surprise, in accordance with psychological studies on humans. A correlation between these states and exploration is then optimized for agents to meet their learning goals. Results: Causal relationships between states and exploration are demonstrated by the majority of agents. A 15.4\% mean increase is noted for surprise, with a 2.8\% mean decrease for pride. Resulting correlations of $\rho_{surprise}=0.461$ and $\rho_{pride}=-0.237$ are obtained, mirroring previously reported human behavior. Conclusions: These findings lead to the conclusion that bio-inspiration for AI development can be of great use. This can incur benefits typically found in living beings, such as autonomy. Further, it empirically shows how AI methodologies can corroborate human behavioral findings, showcasing major interdisciplinary importance. Ramifications are discussed.
- Abstract(参考訳): 背景: 物理的環境の探索は、生物にとって情報の獲得と知識の統合に必須の先駆者である。
しかし、現在の人工知能モデルは、トレーニング中にこれらの自律性を欠き、適応性を妨げている。
本研究は,データ観察中に引き起こされる情動と達成感情に基づいて,本質的な探索ドライブを得るための学習フレームワークを提案する。
方法:本研究では,人間の心理的研究に基づいて,データ分析がプライドやサプライズを判断する,二重モジュール強化フレームワークを提案する。
これらの状態と探索の間の相関関係は、エージェントが学習目標を達成するために最適化される。
結果: 国家と探検の因果関係はエージェントの大多数によって実証される。
15.4\%の平均的な増加は驚きであり、2.8\%の平均的な減少はプライドである。
これまでに報告された人間の振る舞いを反映して、$\rho_{surprise}=0.461$と$\rho_{pride}=-0.237$の相関関係が得られた。
結論:これらの発見は、AI開発のためのバイオインスピレーションが大いに役立つ可能性があるという結論に繋がる。
これは、通常、自律性のような生物に見出される利益をもたらす可能性がある。
さらに、AIの方法論が人間の行動の発見をどのように裏付けるかを実証的に示し、学際的な重要性を示している。
混乱について論じる。
関連論文リスト
- Position: Intelligent Science Laboratory Requires the Integration of Cognitive and Embodied AI [98.19195693735487]
知的科学研究所(ISL)のパラダイムを提案する。
ISLは、認知と具体的知性を深く統合した多層クローズドループフレームワークである。
このようなシステムは、現在の科学的発見の限界を克服するために不可欠である、と我々は主張する。
論文 参考訳(メタデータ) (2025-06-24T13:31:44Z) - AI Agent Behavioral Science [29.262537008412412]
AIエージェント行動科学は、行動の体系的な観察、仮説をテストするための介入の設計、そしてAIエージェントが時間とともにどのように行動し、適応し、相互作用するかの理論的指導による解釈に焦点を当てている。
我々は、個々のエージェント、マルチエージェント、人間とエージェントのインタラクション設定にまたがる研究の体系化を行い、この視点が、公正さ、安全性、解釈可能性、説明責任、プライバシーを行動特性として扱うことによって、責任あるAIにどのように影響を与えるかを実証する。
論文 参考訳(メタデータ) (2025-06-04T08:12:32Z) - Intrinsically-Motivated Humans and Agents in Open-World Exploration [50.00331050937369]
複雑なオープンエンド環境で、大人、子供、AIエージェントを比較します。
エントロピーとエンパワーメントだけが、人類の探査の進歩と一貫して正の相関関係にあることがわかった。
論文 参考訳(メタデータ) (2025-03-31T00:09:00Z) - Analyzing Advanced AI Systems Against Definitions of Life and Consciousness [0.0]
先進的なAIシステムが意識を得たかどうかを調べるための指標をいくつか提案する。
我々は、サボタージュ防御、ミラー自己認識アナログ、メタ認知更新のような免疫を発現する十分に高度なアーキテクチャが、ライフライクまたは意識ライクな特徴に似た重要なしきい値を超えた可能性があることを示唆している。
論文 参考訳(メタデータ) (2025-02-07T15:27:34Z) - Brain-inspired AI Agent: The Way Towards AGI [5.867107330135988]
脳にインスパイアされたAIの研究者たちは、人間の脳の動作メカニズムからインスピレーションを求め、その機能的ルールをインテリジェントなモデルに再現することを目指している。
そこで我々は,脳にインスパイアされたAIエージェントの概念を提案し,比較的実現可能でエージェント互換な皮質領域機能を抽出する方法を分析した。
これらの構造をエージェントに実装することで、人間の能力に似た基本的な認知知性を実現できる。
論文 参考訳(メタデータ) (2024-12-12T02:15:48Z) - Probing for Consciousness in Machines [3.196204482566275]
本研究は, 人工エージェントが中核意識を発達させる可能性を探るものである。
中心意識の出現は、感情や感情の表現によって知らされる自己モデルと世界モデルの統合に依存している。
その結果,エージェントは初歩的な世界と自己モデルを形成することができ,機械意識の発達への道筋が示唆された。
論文 参考訳(メタデータ) (2024-11-25T10:27:07Z) - Towards a Science Exocortex [0.5687661359570725]
我々はエージェントAIシステムにおける技術の現状をレビューし、これらの手法をどのように拡張して科学により大きな影響を与えるかについて論じる。
科学の外食はAIエージェントの群れとして設計することができ、各エージェントは特定の研究者のタスクを個別に合理化することができる。
論文 参考訳(メタデータ) (2024-06-24T14:32:32Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
本研究は,手順を段階的に学習する認知エージェントを提案する。
各サブステージで必要とされる認知機能と, エージェントが未解決の課題に, 新たな機能の追加がどう対処するかを示す。
結果は、このアプローチが複雑なタスクを段階的に解くことができることを示している。
論文 参考訳(メタデータ) (2023-04-30T22:51:31Z) - A Rubric for Human-like Agents and NeuroAI [2.749726993052939]
コントリビュートされた研究は、振る舞いの模倣から機械学習メソッドのテストまで幅広い。
これら3つの目標のうちの1つが自動的に他の目標の進捗に変換されることは想定できない。
これは、弱く強いニューロAIとヒトのようなエージェントの例を用いて明らかにされている。
論文 参考訳(メタデータ) (2022-12-08T16:59:40Z) - NeuroCERIL: Robotic Imitation Learning via Hierarchical Cause-Effect
Reasoning in Programmable Attractor Neural Networks [2.0646127669654826]
本稿では,脳にインスパイアされた神経認知アーキテクチャであるNeuroCERILについて紹介する。
シミュレーションされたロボット模倣学習領域において,NeuroCERILは様々な手続き的スキルを習得できることを示す。
我々は、NeuroCERILは人間のような模倣学習の実行可能な神経モデルであると結論付けた。
論文 参考訳(メタデータ) (2022-11-11T19:56:11Z) - The world seems different in a social context: a neural network analysis
of human experimental data [57.729312306803955]
本研究では,先行・知覚的信号の精度を変化させることで,個人・社会的タスク設定の両方で人間の行動データを再現可能であることを示す。
トレーニングされたネットワークの神経活性化トレースの分析は、情報が個人や社会的条件のネットワークにおいて、根本的に異なる方法でコード化されていることを示す。
論文 参考訳(メタデータ) (2022-03-03T17:19:12Z) - From Psychological Curiosity to Artificial Curiosity: Curiosity-Driven
Learning in Artificial Intelligence Tasks [56.20123080771364]
心理学的好奇心は、探索と情報取得を通じて学習を強化するために、人間の知性において重要な役割を果たす。
人工知能(AI)コミュニティでは、人工好奇心は効率的な学習に自然な本質的な動機を与える。
CDLはますます人気を博し、エージェントは新たな知識を学習するために自己動機付けされている。
論文 参考訳(メタデータ) (2022-01-20T17:07:03Z) - Cognitive architecture aided by working-memory for self-supervised
multi-modal humans recognition [54.749127627191655]
人間パートナーを認識する能力は、パーソナライズされた長期的な人間とロボットの相互作用を構築するための重要な社会的スキルです。
ディープラーニングネットワークは最先端の結果を達成し,そのような課題に対処するための適切なツールであることが実証された。
1つの解決策は、ロボットに自己スーパービジョンで直接の感覚データから学習させることである。
論文 参考訳(メタデータ) (2021-03-16T13:50:24Z) - AGENT: A Benchmark for Core Psychological Reasoning [60.35621718321559]
直観心理学は、観察可能な行動を駆動する隠された精神変数を推論する能力です。
他のエージェントを推論する機械エージェントに対する近年の関心にもかかわらず、そのようなエージェントが人間の推論を駆動するコア心理学の原則を学ぶか保持するかは明らかではない。
本稿では,プロシージャが生成する3dアニメーション,エージェントを4つのシナリオで構成したベンチマークを提案する。
論文 参考訳(メタデータ) (2021-02-24T14:58:23Z) - A Developmental Neuro-Robotics Approach for Boosting the Recognition of
Handwritten Digits [91.3755431537592]
近年のエビデンスでは、子どもの体現戦略をシミュレーションすることで、マシンインテリジェンスも改善できることが示されている。
本稿では,発達神経ロボティクスの文脈における畳み込みニューラルネットワークモデルへの具体的戦略の適用について検討する。
論文 参考訳(メタデータ) (2020-03-23T14:55:00Z) - SensAI+Expanse Emotional Valence Prediction Studies with Cognition and
Memory Integration [0.0]
この研究は、認知科学研究を支援することができる人工知能エージェントに貢献する。
開発された人工知能システム(SensAI+Expanse)には、機械学習アルゴリズム、共感アルゴリズム、メモリが含まれる。
本研究は, 年齢と性別の相違が有意であることを示すものである。
論文 参考訳(メタデータ) (2020-01-03T18:17:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。