論文の概要: Solving differential equations using physics informed deep learning: a
hand-on tutorial with benchmark tests
- arxiv url: http://arxiv.org/abs/2302.12260v2
- Date: Tue, 4 Apr 2023 16:00:35 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-05 17:48:53.175642
- Title: Solving differential equations using physics informed deep learning: a
hand-on tutorial with benchmark tests
- Title(参考訳): 物理学インフォームド深層学習による微分方程式の解法--ベンチマークテストを用いたハンドオンチュートリアル
- Authors: Hubert Baty, Leo Baty
- Abstract要約: ディープラーニングとニューラルネットワークによる微分方程式の解法について再検討する。
トレーニングプロセスに最小限のデータを使用する可能性に焦点を当てます。
単純な方程式モデルに関するチュートリアルは、通常の微分方程式の方法の実践方法を説明している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We revisit the original approach of using deep learning and neural networks
to solve differential equations by incorporating the knowledge of the equation.
This is done by adding a dedicated term to the loss function during the
optimization procedure in the training process. The so-called physics-informed
neural networks (PINNs) are tested on a variety of academic ordinary
differential equations in order to highlight the benefits and drawbacks of this
approach with respect to standard integration methods. We focus on the
possibility to use the least possible amount of data into the training process.
The principles of PINNs for solving differential equations by enforcing
physical laws via penalizing terms are reviewed. A tutorial on a simple
equation model illustrates how to put into practice the method for ordinary
differential equations. Benchmark tests show that a very small amount of
training data is sufficient to predict the solution when the non linearity of
the problem is weak. However, this is not the case in strongly non linear
problems where a priori knowledge of training data over some partial or the
whole time integration interval is necessary.
- Abstract(参考訳): 本稿では,深層学習とニューラルネットワークを用いた微分方程式の解法を,方程式の知識を取り入れて再検討する。
これはトレーニングプロセスの最適化手順中に損失関数に専門用語を追加することによって行われる。
いわゆる物理インフォームドニューラルネットワーク(PINN)は、標準的な積分法に関してこのアプローチの利点と欠点を強調するために、様々な学術的な常微分方程式でテストされる。
トレーニングプロセスに可能な限りの少ないデータを使用する可能性に注目します。
ペナリゼーション項を通じて物理法則を強制することにより微分方程式を解くピンの原理を概説する。
単純な方程式モデルに関するチュートリアルは、通常の微分方程式の方法の実践方法を説明している。
ベンチマークテストでは、問題の非線型性が弱い場合、非常に少量のトレーニングデータが解を予測するのに十分であることが示されている。
しかし、一部の部分的あるいは全体の時間積分区間でトレーニングデータの事前知識が必要となるような、強非線型問題ではそうではない。
関連論文リスト
- Implementation and (Inverse Modified) Error Analysis for
implicitly-templated ODE-nets [0.0]
我々は,暗黙的な数値初期値問題解法に基づいてテンプレート化されたODE-netを用いてデータから未知のダイナミクスを学習することに焦点を当てた。
我々は,非ロール型暗黙的スキームを用いて,ODE-netの逆修正誤り解析を行い,解釈を容易にする。
我々は,誤差のレベルを監視し,暗黙的な解反復数に適応する適応アルゴリズムを定式化する。
論文 参考訳(メタデータ) (2023-03-31T06:47:02Z) - Locally Regularized Neural Differential Equations: Some Black Boxes Were
Meant to Remain Closed! [3.222802562733787]
ニューラル微分方程式のような暗黙の層深層学習技術は重要なモデリングフレームワークとなっている。
パフォーマンスとトレーニング時間をトレードオフする2つのサンプリング戦略を開発します。
本手法は,関数評価を0.556-0.733xに削減し,予測を1.3-2xに高速化する。
論文 参考訳(メタデータ) (2023-03-03T23:31:15Z) - Mixed formulation of physics-informed neural networks for
thermo-mechanically coupled systems and heterogeneous domains [0.0]
物理インフォームドニューラルネットワーク(PINN)は境界値問題を解決するための新しいツールである。
近年の研究では、多くの工学的問題に対して損失関数を設計する際には、一階微分を使い、強い形式と弱い形式の方程式を組み合わせることにより、はるかに精度が向上することが示されている。
本研究では,多物理問題,特に定常熱力学的に結合した方程式系を解くために混合定式化を適用することを提案する。
論文 参考訳(メタデータ) (2023-02-09T21:56:59Z) - Physics-guided Data Augmentation for Learning the Solution Operator of
Linear Differential Equations [2.1850269949775663]
ニューラルネットワークモデルの精度と一般化を改善するために,物理誘導型データ拡張法(PGDA)を提案する。
様々な線形微分方程式におけるPGDAの利点を実証し、PGDAがサンプルの複雑さを向上し、分布シフトに頑健であることを示す。
論文 参考訳(メタデータ) (2022-12-08T06:29:15Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Simple Stochastic and Online Gradient DescentAlgorithms for Pairwise
Learning [65.54757265434465]
ペアワイズ学習(Pairwise learning)とは、損失関数がペアインスタンスに依存するタスクをいう。
オンライン降下(OGD)は、ペアワイズ学習でストリーミングデータを処理する一般的なアプローチである。
本稿では,ペアワイズ学習のための手法について,シンプルでオンラインな下降を提案する。
論文 参考訳(メタデータ) (2021-11-23T18:10:48Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Computational characteristics of feedforward neural networks for solving
a stiff differential equation [0.0]
減衰系をモデル化する単純だが基本的な常微分方程式の解について検討する。
パラメータやメソッドに対して好適な選択を特定できることを示す。
全体として、ニューラルネットワークアプローチによる信頼性と正確な結果を得るために何ができるかを示すことで、この分野の現在の文献を拡張します。
論文 参考訳(メタデータ) (2020-12-03T12:22:24Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z) - STEER: Simple Temporal Regularization For Neural ODEs [80.80350769936383]
トレーニング中のODEの終了時刻をランダムにサンプリングする新しい正規化手法を提案する。
提案された正規化は実装が簡単で、オーバーヘッドを無視でき、様々なタスクで有効である。
本稿では,フローの正規化,時系列モデル,画像認識などの実験を通じて,提案した正規化がトレーニング時間を大幅に短縮し,ベースラインモデルよりも性能を向上できることを示す。
論文 参考訳(メタデータ) (2020-06-18T17:44:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。