A survey of machine learning techniques in medical applications
- URL: http://arxiv.org/abs/2302.13268v5
- Date: Tue, 30 Jul 2024 10:29:24 GMT
- Title: A survey of machine learning techniques in medical applications
- Authors: M. Keramy, K. Jahanian, R. Sani, A. Agha, I. Dehzangy, M. Yan, H. Rokni,
- Abstract summary: The exponential growth of medical data has surpassed the capacity for manual analysis, prompting increased interest in automated data analysis and processing.
ML algorithms, capable of learning from data with minimal human intervention, are particularly well-suited for medical data analysis and interpretation.
One significant advantage of ML is the reduced cost of collecting labeled training data necessary for supervised learning.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: In recent years, machine learning (ML) has emerged as a powerful tool for solving a wide range of problems, including medical decision-making. The exponential growth of medical data over the past two decades has surpassed the capacity for manual analysis, prompting increased interest in automated data analysis and processing. ML algorithms, capable of learning from data with minimal human intervention, are particularly well-suited for medical data analysis and interpretation. One significant advantage of ML is the reduced cost of collecting labeled training data necessary for supervised learning. While numerous studies have explored the applications of ML in medicine, this survey specifically focuses on the use of ML across various medical research fields. We provide a comprehensive technical overview of existing studies on ML applications in medicine, highlighting the strengths and limitations of these approaches. Additionally, we discuss potential research directions for future exploration. These include the development of more sophisticated reward functions, as the accuracy of the reward function is crucial for ML performance, the integration of ML with other techniques, and the application of ML to new and emerging areas in genomics research. Finally, we summarize our findings and present the current state of the field and the future outlook for ML in medical application.
Related papers
- Machine Learning for Missing Value Imputation [0.0]
The main objective of this article is to conduct a comprehensive and rigorous review, as well as analysis, of the state-of-the-art machine learning applications in Missing Value Imputation.
More than 100 articles published between 2014 and 2023 are critically reviewed, considering the methods and findings.
The latest literature is examined to scrutinize the trends in MVI methods and their evaluation.
arXiv Detail & Related papers (2024-10-10T18:56:49Z) - Large Language Models in Drug Discovery and Development: From Disease Mechanisms to Clinical Trials [49.19897427783105]
The integration of Large Language Models (LLMs) into the drug discovery and development field marks a significant paradigm shift.
We investigate how these advanced computational models can uncover target-disease linkage, interpret complex biomedical data, enhance drug molecule design, predict drug efficacy and safety profiles, and facilitate clinical trial processes.
arXiv Detail & Related papers (2024-09-06T02:03:38Z) - Recent Advances on Machine Learning for Computational Fluid Dynamics: A Survey [51.87875066383221]
This paper introduces fundamental concepts, traditional methods, and benchmark datasets, then examine the various roles Machine Learning plays in improving CFD.
We highlight real-world applications of ML for CFD in critical scientific and engineering disciplines, including aerodynamics, combustion, atmosphere & ocean science, biology fluid, plasma, symbolic regression, and reduced order modeling.
We draw the conclusion that ML is poised to significantly transform CFD research by enhancing simulation accuracy, reducing computational time, and enabling more complex analyses of fluid dynamics.
arXiv Detail & Related papers (2024-08-22T07:33:11Z) - When Raw Data Prevails: Are Large Language Model Embeddings Effective in Numerical Data Representation for Medical Machine Learning Applications? [8.89829757177796]
We examine the effectiveness of vector representations from last hidden states of Large Language Models for medical diagnostics and prognostics.
We focus on instruction-tuned LLMs in a zero-shot setting to represent abnormal physiological data and evaluate their utilities as feature extractors.
Although findings suggest the raw data features still prevails in medical ML tasks, zero-shot LLM embeddings demonstrate competitive results.
arXiv Detail & Related papers (2024-08-15T03:56:40Z) - The Significance of Machine Learning in Clinical Disease Diagnosis: A
Review [0.0]
This research investigates the capacity of machine learning algorithms to improve the transmission of heart rate data in time series healthcare metrics.
The factors under consideration include the algorithm utilized, the types of diseases targeted, the data types employed, the applications, and the evaluation metrics.
arXiv Detail & Related papers (2023-10-25T20:28:22Z) - Artificial Intelligence for Dementia Research Methods Optimization [0.49050354212898845]
We present an overview of machine learning algorithms most frequently used in dementia research.
We discuss issues of replicability and interpretability and how these impact the clinical applicability of dementia research.
We give examples of how state-of-the-art methods, such as transfer learning, multi-task learning, and reinforcement learning, may be applied to overcome these issues.
arXiv Detail & Related papers (2023-03-02T08:50:25Z) - Machine Learning for Software Engineering: A Tertiary Study [13.832268599253412]
Machine learning (ML) techniques increase the effectiveness of software engineering (SE) lifecycle activities.
We systematically collected, quality-assessed, summarized, and categorized 83 reviews in ML for SE published between 2009-2022, covering 6,117 primary studies.
The SE areas most tackled with ML are software quality and testing, while human-centered areas appear more challenging for ML.
arXiv Detail & Related papers (2022-11-17T09:19:53Z) - Machine learning in bioprocess development: From promise to practice [58.720142291102135]
Data-driven methods like machine learning (ML) approaches have a high potential to rationally explore large design spaces.
The aim of this review is to demonstrate how ML methods have been applied so far in bioprocess development.
arXiv Detail & Related papers (2022-10-04T13:48:59Z) - Detecting Shortcut Learning for Fair Medical AI using Shortcut Testing [62.9062883851246]
Machine learning holds great promise for improving healthcare, but it is critical to ensure that its use will not propagate or amplify health disparities.
One potential driver of algorithmic unfairness, shortcut learning, arises when ML models base predictions on improper correlations in the training data.
Using multi-task learning, we propose the first method to assess and mitigate shortcut learning as a part of the fairness assessment of clinical ML systems.
arXiv Detail & Related papers (2022-07-21T09:35:38Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
Machine learning can provide deep insights into data, allowing machines to make high-quality predictions.
Most sophisticated machine learning approaches suffer from huge time costs when operating on large-scale data.
Large-scale Machine Learning aims to learn patterns from big data with comparable performance efficiently.
arXiv Detail & Related papers (2020-08-10T06:07:52Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.