論文の概要: Error Analysis of Physics-Informed Neural Networks for Approximating
Dynamic PDEs of Second Order in Time
- arxiv url: http://arxiv.org/abs/2303.12245v1
- Date: Wed, 22 Mar 2023 00:51:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-23 15:47:41.515073
- Title: Error Analysis of Physics-Informed Neural Networks for Approximating
Dynamic PDEs of Second Order in Time
- Title(参考訳): 物理に変形したニューラルネットワークの2次動的pdes近似のための誤差解析
- Authors: Yanxia Qian, Yongchao Zhang, Yunqing Huang, Suchuan Dong
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)による2次動的偏微分方程式(PDE)の近似について検討する。
分析の結果,2つの隠れ層と$tanh$アクティベーション関数を持つフィードフォワードニューラルネットワークでは,トレーニング損失とトレーニングデータポイント数によって,解場のPINN近似誤差を効果的にバウンドすることができることがわかった。
本稿では, 波動方程式, Sine-Gordon 方程式, 線形エラストダイナミック方程式に対する新しい PINN アルゴリズムを用いた数値実験を行った。
- 参考スコア(独自算出の注目度): 1.123111111659464
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the approximation of a class of dynamic partial differential
equations (PDE) of second order in time by the physics-informed neural network
(PINN) approach, and provide an error analysis of PINN for the wave equation,
the Sine-Gordon equation and the linear elastodynamic equation. Our analyses
show that, with feed-forward neural networks having two hidden layers and the
$\tanh$ activation function, the PINN approximation errors for the solution
field, its time derivative and its gradient field can be effectively bounded by
the training loss and the number of training data points (quadrature points).
Our analyses further suggest new forms for the training loss function, which
contain certain residuals that are crucial to the error estimate but would be
absent from the canonical PINN loss formulation. Adopting these new forms for
the loss function leads to a variant PINN algorithm. We present ample numerical
experiments with the new PINN algorithm for the wave equation, the Sine-Gordon
equation and the linear elastodynamic equation, which show that the method can
capture the solution well.
- Abstract(参考訳): 物理学的インフォームド・ニューラル・ネットワーク(pinn)アプローチにより、時間的に2階の動的偏微分方程式(pde)のクラスを近似し、波方程式、サイン・ゴルドン方程式、線形エラストダイナミック方程式に対するピンの誤差解析を提供する。
解析の結果,2つの隠れ層と$\tanh$アクティベーション関数を持つフィードフォワードニューラルネットワークでは,解場のピン近似誤差,時間微分とその勾配場は,トレーニング損失とトレーニングデータ点数(量子点)によって効果的に境界化できることがわかった。
さらに, 誤差推定に不可欠であるが, 正規のPINN損失定式化に欠かせない残差を含む訓練損失関数の新たな形式を提案する。
損失関数にこれらの新しい形式を採用すると、異種PINNアルゴリズムが現れる。
本稿では, 波動方程式に対するpinnアルゴリズム, 正弦ゴドン方程式, 線形エラストダイナミック方程式を用いて, 解をうまく捉えることができることを示す。
関連論文リスト
- Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Neural tangent kernel analysis of PINN for advection-diffusion equation [0.0]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解を数値的に近似する
PINNは、クローズドフォーム解析ソリューションが利用可能である単純なケースでも苦労することが知られている。
この研究は、ニューラル・タンジェント・カーネル(NTK)理論を用いた線形対流拡散方程式(LAD)に対するPINNの体系的解析に焦点をあてる。
論文 参考訳(メタデータ) (2022-11-21T18:35:14Z) - Semi-analytic PINN methods for singularly perturbed boundary value
problems [0.8594140167290099]
本稿では,新しい半解析的物理情報ニューラルネットワーク(PINN)を提案し,特異な摂動境界値問題の解法を提案する。
PINNは、偏微分方程式の数値解を見つけるための有望な視点を提供する科学機械学習フレームワークである。
論文 参考訳(メタデータ) (2022-08-19T04:26:40Z) - Wave simulation in non-smooth media by PINN with quadratic neural
network and PML condition [2.7651063843287718]
最近提案された物理インフォームドニューラルネットワーク(PINN)は、幅広い偏微分方程式(PDE)を解くことに成功している。
本稿では、波動方程式の代わりにPINNを用いて周波数領域における音響および粘性音響散乱波動方程式を解き、震源の摂動を除去する。
PMLと2次ニューロンは、その効果と減衰を改善できることを示し、この改善の理由を議論する。
論文 参考訳(メタデータ) (2022-08-16T13:29:01Z) - Neural Basis Functions for Accelerating Solutions to High Mach Euler
Equations [63.8376359764052]
ニューラルネットワークを用いた偏微分方程式(PDE)の解法を提案する。
ニューラルネットワークの集合を縮小順序 Proper Orthogonal Decomposition (POD) に回帰する。
これらのネットワークは、所定のPDEのパラメータを取り込み、PDEに還元順序近似を計算する分岐ネットワークと組み合わせて使用される。
論文 参考訳(メタデータ) (2022-08-02T18:27:13Z) - Learning Physics-Informed Neural Networks without Stacked
Back-propagation [82.26566759276105]
我々は,物理インフォームドニューラルネットワークのトレーニングを著しく高速化する新しい手法を開発した。
特に、ガウス滑らか化モデルによりPDE解をパラメータ化し、スタインの恒等性から導かれる2階微分がバックプロパゲーションなしで効率的に計算可能であることを示す。
実験の結果,提案手法は通常のPINN訓練に比べて2桁の精度で競合誤差を実現できることがわかった。
論文 参考訳(メタデータ) (2022-02-18T18:07:54Z) - Incorporating NODE with Pre-trained Neural Differential Operator for
Learning Dynamics [73.77459272878025]
ニューラル微分演算子(NDO)の事前学習による動的学習における教師付き信号の強化を提案する。
NDOは記号関数のクラスで事前訓練され、これらの関数の軌跡サンプルとそれらの導関数とのマッピングを学習する。
我々は,NDOの出力が,ライブラリの複雑さを適切に調整することで,基礎となる真理微分を適切に近似できることを理論的に保証する。
論文 参考訳(メタデータ) (2021-06-08T08:04:47Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z) - A nonlocal physics-informed deep learning framework using the
peridynamic differential operator [0.0]
本研究では,長距離相互作用を組み込んだ数値計算法であるPeridynamic Differential Operator (PDDO) を用いた非局所PINN手法を開発した。
PDDO関数はニューラルネットワークアーキテクチャに容易に組み込むことができるため、非局所性は現代のディープラーニングアルゴリズムの性能を低下させることはない。
本稿では,非局所PINNの解法精度とパラメータ推定の両方において,局所PINNに対して優れた振る舞いを示す。
論文 参考訳(メタデータ) (2020-05-31T06:26:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。