論文の概要: Combining the QAOA and HHL Algorithm to achieve a Substantial Quantum
Speedup for the Unit Commitment Problem
- arxiv url: http://arxiv.org/abs/2305.08482v2
- Date: Thu, 15 Jun 2023 14:56:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-17 00:48:00.856619
- Title: Combining the QAOA and HHL Algorithm to achieve a Substantial Quantum
Speedup for the Unit Commitment Problem
- Title(参考訳): QAOAアルゴリズムとHHLアルゴリズムを組み合わせることでユニットコミット問題に対する実質量子スピードアップを実現する
- Authors: Jonas Stein, Jezer Jojo, Afrah Farea, David Bucher, Philipp Altmann,
M. Serdar \c{C}elebi, Claudia Linnhoff-Popien
- Abstract要約: 本稿では,既存の古典的手法よりも少なくとも3倍高速に単位コミットメント(UC)問題を解く量子アルゴリズムを提案する。
これは、QAOAルーチン内のHHLアルゴリズムを用いてエネルギー伝達コストを計算することで達成される。
- 参考スコア(独自算出の注目度): 4.670374869377859
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a quantum algorithm to solve the unit commitment
(UC) problem at least cubically faster than existing classical approaches. This
is accomplished by calculating the energy transmission costs using the HHL
algorithm inside a QAOA routine. We verify our findings experimentally using
quantum circuit simulators in a small case study. Further, we postulate the
applicability of the concepts developed for this algorithm to be used for a
large class of optimization problems that demand solving a linear system of
equations in order to calculate the cost function for a given solution.
- Abstract(参考訳): 本稿では,既存の古典的手法よりも少なくとも立方的に高速に単位コミットメント(uc)問題を解く量子アルゴリズムを提案する。
これは、QAOAルーチン内のHHLアルゴリズムを用いてエネルギー伝達コストを計算することで達成される。
量子回路シミュレータを用いた小ケーススタディにおいて,本研究を実験的に検証した。
さらに, 与えられた解のコスト関数を計算するために, 方程式の線形系を解くことを要求する大規模な最適化問題に対して, このアルゴリズムで開発された概念の適用性を仮定する。
関連論文リスト
- Compact quantum algorithms for time-dependent differential equations [0.0]
我々は、ユニタリの線形結合に基づくアイデアに基づいて、非ユニタリで非エルミート量子系をシミュレートする。
我々は,反復行列ベクトル乗算と行列逆演算を効率的に行うハイブリッド量子古典アルゴリズムを生成する。
論文 参考訳(メタデータ) (2024-05-16T02:14:58Z) - Quantum Tunneling: From Theory to Error-Mitigated Quantum Simulation [49.1574468325115]
本研究では,量子トンネルシミュレーションの理論的背景とハードウェア対応回路の実装について述べる。
我々は、ハードウェアのアンダーユース化問題を解決するために、ZNEとREM(エラー軽減技術)と量子チップのマルチプログラミングを使用する。
論文 参考訳(メタデータ) (2024-04-10T14:27:07Z) - Towards Optimizations of Quantum Circuit Simulation for Solving Max-Cut
Problems with QAOA [1.5047640669285467]
量子近似最適化アルゴリズム(QAOA)は、近似を用いて最適化問題を解くために用いられる一般的な量子アルゴリズムの1つである。
しかし、仮想量子コンピュータ上でのQAOAの実行は、最適化問題を解くのに遅いシミュレーション速度に悩まされている。
本稿では,QAOAの量子演算を数学的に最適化し,QCSを高速化する手法を提案する。
論文 参考訳(メタデータ) (2023-12-05T06:08:57Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
我々は、係数に応じてハミルトン式からサンプリングしてランダムな積公式を構築するqDriftプロトコルを導入する。
サンプリング段階における個別のシミュレーションコストを考慮し、同じ精度でシミュレーションコストを削減可能であることを示す。
格子核効果場理論を用いて数値シミュレーションを行った結果, 実験結果が得られた。
論文 参考訳(メタデータ) (2022-12-12T15:06:32Z) - Preparing Arbitrary Continuous Functions in Quantum Registers With
Logarithmic Complexity [0.0]
主要なアプリケーションは、入力が効率的に準備された場合にのみ、潜在的なスピードアップを達成することができる。
所望の解法において、対数複雑性を持つ任意の連続関数に従って量子状態を効率的に作成する問題を効果的に解決する。
私たちの研究は、金融予測や量子シミュレーションなど、幅広い応用に重大な影響を与える。
論文 参考訳(メタデータ) (2022-05-01T17:29:12Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
マルチオブジェクト追跡(MOT)は、オブジェクト検出が時間を通して関連付けられているトラッキング・バイ・検出のパラダイムにおいて、最もよくアプローチされる。
これらの最適化問題はNPハードであるため、現在のハードウェア上の小さなインスタンスに対してのみ正確に解決できる。
本手法は,既成整数計画法を用いても,最先端の最適化手法と競合することを示す。
論文 参考訳(メタデータ) (2022-02-17T18:59:20Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
時間に依存しない深さの量子回路を生成するための構成的アルゴリズムを提案する。
一次元横フィールドXYモデルにおけるアンダーソン局在化を含む、モデルの特殊クラスに対するアルゴリズムを強調する。
幅広いスピンモデルとフェルミオンモデルに対して正確な回路を提供するのに加えて、我々のアルゴリズムは最適なハミルトニアンシミュレーションに関する幅広い解析的および数値的な洞察を提供する。
論文 参考訳(メタデータ) (2021-04-01T19:06:00Z) - Offline Model-Based Optimization via Normalized Maximum Likelihood
Estimation [101.22379613810881]
データ駆動最適化の問題を検討し、一定の点セットでクエリのみを与えられた関数を最大化する必要がある。
この問題は、関数評価が複雑で高価なプロセスである多くの領域に現れる。
我々は,提案手法を高容量ニューラルネットワークモデルに拡張可能なトラクタブル近似を提案する。
論文 参考訳(メタデータ) (2021-02-16T06:04:27Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Quantum Approximate Optimization for Hard Problems in Linear Algebra [0.0]
本稿では,線形代数における他の難解問題の構成要素として,二元線形最小平方体 (BLLS) に対するQAOAについて検討する。
この研究の範囲では、ノイズのない量子シミュレータ、デバイスリアリスティックノイズモデルを含むシミュレータ、2つのIBM Q 5-qubitマシンで実験を行った。
我々の数値は、基底状態のサンプリングの確率が$pleq3$のQAOA深さでBLLSのQAOAよりも優れていることを示している。
論文 参考訳(メタデータ) (2020-06-27T20:13:24Z) - Quantum-Enhanced Simulation-Based Optimization [0.8057006406834467]
シミュレーションに基づく最適化は、正確に評価するのに計算コストのかかる目的関数を最適化することを目指している。
量子振幅推定(QAE)は、古典モンテカルロシミュレーションよりも2次的なスピードアップを達成することができる。
論文 参考訳(メタデータ) (2020-05-21T17:02:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。