論文の概要: Data driven localized wave solution of the Fokas-Lenells equation using
modified PINN
- arxiv url: http://arxiv.org/abs/2306.03105v1
- Date: Sat, 3 Jun 2023 06:06:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-07 19:09:16.265310
- Title: Data driven localized wave solution of the Fokas-Lenells equation using
modified PINN
- Title(参考訳): 修正ピンを用いたfokas-lenells方程式のデータ駆動局所波解
- Authors: Gautam Kumar Saharia, Sagardeep Talukdar, Riki Dutta and Sudipta Nandy
- Abstract要約: 物理情報ニューラルネットワーク(PINN)を用いたFokas-Lenells方程式のデータ駆動局所波解について検討する。
残留損失関数に制御パラメータを組み込むことにより,基礎的なPINNを改善する。
Fokas-Lenells方程式のデータ駆動型明るいソリトンおよびダークソリトン解を得る。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate data driven localized wave solutions of the Fokas-Lenells
equation by using physics informed neural network(PINN). We improve basic PINN
by incorporating control parameters into the residual loss function. We also
add conserve quantity as another loss term to modify the PINN. Using modified
PINN we obtain the data driven bright soliton and dark soliton solutions of
Fokas-Lenells equation. Conserved quantities informed loss function achieve
more accuracy in terms of relative L2 error between predicted and exact soliton
solutions. We hope that the present investigation would be useful to study the
applications of deep learning in nonlinear optics and other branches of
nonlinear physics. Source codes are available at
https://github.com/gautamksaharia/Fokas-Lenells
- Abstract(参考訳): 物理情報ニューラルネットワーク(PINN)を用いて,Fokas-Lenells方程式のデータ駆動局所波解について検討した。
残留損失関数に制御パラメータを組み込むことにより,基礎的なPINNを改善する。
また、PINNを変更するための別の損失項として保存量を追加します。
修正PINNを用いて、フォカス・レネルス方程式のデータ駆動型明るいソリトンと暗いソリトン解を得る。
保存量情報損失関数は、予測解と正確なソリトン解の間の相対l2誤差の点でより精度が向上する。
本研究は,非線形光学および非線形物理学の他の分野における深層学習の応用を研究する上で有用であると期待する。
ソースコードはhttps://github.com/gautamksaharia/Fokas-Lenellsで入手できる。
関連論文リスト
- Learning solutions of parametric Navier-Stokes with physics-informed
neural networks [0.3989223013441816]
パラメトリックナビエ・ストークス方程式(NSE)の解関数の学習にPIN(Palformed-Informed Neural Networks)を利用する。
パラメータのパラメータを座標とともにPINの入力とみなし、パラメータのインスタンスに対するパラメトリックPDESの数値解に基づいてPINを訓練する。
提案手法は, 解関数を学習するPINNモデルを最適化し, 流量予測が質量・運動量の保存則と一致していることを確認する。
論文 参考訳(メタデータ) (2024-02-05T16:19:53Z) - Predictive Limitations of Physics-Informed Neural Networks in Vortex
Shedding [0.0]
2Dシリンダーのまわりの流れを見て、データのないPINNは渦の沈みを予測できないことに気付きました。
データ駆動型PINNは、トレーニングデータが利用可能である間のみ渦シーディングを表示するが、データフローが停止したときに定常状態のソリューションに戻す。
複素平面上のクープマン固有値の分布は、PINNが数値的に分散し、拡散することを示唆している。
論文 参考訳(メタデータ) (2023-05-31T22:59:52Z) - Bayesian Physics Informed Neural Networks for Data Assimilation and
Spatio-Temporal Modelling of Wildfires [11.00425904688764]
我々は、レベルセット関数のゼロレベルセットを通してファイアフロントをモデル化する偏微分方程式であるレベルセット方程式を、PINNを用いて解く。
負荷変数が極端に変化した場合、一般的なコスト関数は、モデル化されたファイアフロントにおける時間的連続性を維持できないことを示す。
我々は, PINN内のデータ同化を行う手法を開発し, モデル化されたPIN予測を火災前兆の観測に向ける。
論文 参考訳(メタデータ) (2022-12-02T05:00:41Z) - FO-PINNs: A First-Order formulation for Physics Informed Neural Networks [1.8874301050354767]
物理インフォームドニューラルネットワーク(英: Physics-Informed Neural Networks、PINN)は、物理システムの応答をシミュレーションデータなしで学習するディープラーニングニューラルネットワークのクラスである。
PINNは前方および逆問題の解決に有効であるが、パラメータ化システムでは精度が大幅に低下する。
PDE損失関数の1次定式化を用いてトレーニングした1次物理学情報ニューラルネットワーク(FO-PINN)を提案する。
論文 参考訳(メタデータ) (2022-10-25T20:25:33Z) - Robust Regression with Highly Corrupted Data via Physics Informed Neural
Networks [4.642273921499256]
物理インフォームドニューラルネットワーク(PINN)は、2つの主要な問題のクラスを解決するために提案されている。
本研究では,ノイズおよび劣化測定データから支配方程式を復元するアルゴリズムの一般化性,精度,効率性を示す。
論文 参考訳(メタデータ) (2022-10-19T15:21:05Z) - Physics-Informed Neural Network Method for Parabolic Differential
Equations with Sharply Perturbed Initial Conditions [68.8204255655161]
急激な摂動初期条件を持つパラボラ問題に対する物理インフォームドニューラルネットワーク(PINN)モデルを開発した。
ADE解の局所的な大きな勾配は(PINNでよく見られる)ラテンハイパーキューブで方程式の残余の高効率なサンプリングを行う。
本稿では,他の方法により選択した量よりも精度の高いPINNソリューションを生成する損失関数における重みの基準を提案する。
論文 参考訳(メタデータ) (2022-08-18T05:00:24Z) - Learning to Solve PDE-constrained Inverse Problems with Graph Networks [51.89325993156204]
科学と工学にまたがる多くの応用分野において、偏微分方程式(PDE)によって定義される制約で逆問題を解決することに興味がある。
ここでは、これらのPDE制約された逆問題を解決するために、GNNを探索する。
GNNを用いて計算速度を最大90倍に向上させる。
論文 参考訳(メタデータ) (2022-06-01T18:48:01Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
我々は、PINNを正しい解に収束させるため、解区間を徐々に拡大することを提案する。
すべてのアンサンブルのメンバーは、観測されたデータの近くで同じ解に収束する。
提案手法は, 得られた解の精度を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-04-11T14:05:34Z) - Physics-Informed Neural Operator for Learning Partial Differential
Equations [55.406540167010014]
PINOは、演算子を学ぶために異なる解像度でデータとPDE制約を組み込んだ最初のハイブリッドアプローチである。
結果の PINO モデルは、多くの人気のある PDE ファミリの基底構造解演算子を正確に近似することができる。
論文 参考訳(メタデータ) (2021-11-06T03:41:34Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。