論文の概要: Generalized Random Forests using Fixed-Point Trees
- arxiv url: http://arxiv.org/abs/2306.11908v2
- Date: Fri, 28 Feb 2025 19:38:10 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-04 16:11:10.745953
- Title: Generalized Random Forests using Fixed-Point Trees
- Title(参考訳): 固定点木を用いた一般化ランダム林
- Authors: David Fleischer, David A. Stephens, Archer Yang,
- Abstract要約: 本研究では,多次元の異質効果を推定するための一般化ランダム林arXiv:1610.01271(GRFs)の計算効率の良い代替案を提案する。
GRFは、計算コストが高く不安定な勾配に基づく分割基準に依存しているが、この手法では、ジャコビアン推定の必要性を排除した固定点近似を導入する。
提案手法は,機械学習および因果推論アプリケーションにおける局所的効果推定のスケーラブルな代替手段であることが示唆された。
- 参考スコア(独自算出の注目度): 2.5944208050492183
- License:
- Abstract: We propose a computationally efficient alternative to generalized random forests arXiv:1610.01271 (GRFs) for estimating heterogeneous effects in large dimensions. While GRFs rely on a gradient-based splitting criterion, which is large dimensions is computationally expensive and unstable, our method introduces a fixed-point approximation that eliminates the need for Jacobian estimation. This gradient-free approach preserves GRFs theoretical guarantees of consistency and asymptotic normality while significantly improving computational efficiency. We demonstrate that our method achieves multiple times the speed over standard GRFs without compromising statistical accuracy. Experiments on both simulated and real-world data, validate our approach. Our findings suggest that the proposed method is a scalable alternative for localized effect estimation in machine learning and causal inference applications.
- Abstract(参考訳): 本研究では,多次元の異質効果を推定するための一般化ランダム林arXiv:1610.01271(GRFs)の計算効率の良い代替案を提案する。
GRFは、計算コストが高く不安定な勾配に基づく分割基準に依存しているが、この手法では、ジャコビアン推定の必要性を排除した固定点近似を導入する。
この勾配のないアプローチは、計算効率を著しく改善しながら、GRFの一貫性と漸近正規性の理論的保証を保っている。
提案手法は, 統計的精度を損なうことなく, 標準GRFの何倍もの速度を達成できることを実証する。
シミュレーションデータと実世界のデータの両方で実験を行い、我々のアプローチを検証する。
提案手法は,機械学習および因果推論アプリケーションにおける局所的効果推定のスケーラブルな代替手段であることが示唆された。
関連論文リスト
- A Powerful Random Forest Featuring Linear Extensions (RaFFLE) [1.2233362977312945]
RaFFLEは、ランダムな森林アンサンブル内でPILOTツリーをベースラーナーとして統合する新しいフレームワークである。
PILOT木は、従来の決定木の計算効率と線形モデル木の柔軟性を組み合わせたものである。
RaFFLEは様々な回帰問題に対処するための汎用ツールであることが証明されている。
論文 参考訳(メタデータ) (2025-02-14T14:22:51Z) - Soft regression trees: a model variant and a decomposition training algorithm [0.24578723416255752]
そこで本研究では,各入力ベクトルに対して,単一の葉ノードに関連付けられた線形回帰として定義する,ソフト多変量回帰木(SRT)の新たな変種を提案する。
SRTは条件付き計算特性、すなわち各予測は少数のノードに依存する。
15のよく知られたデータセットの実験により、従来のソフトレグレッションツリーと比較して、我々のSRTと分解アルゴリズムは高い精度とロバスト性が得られることが示された。
論文 参考訳(メタデータ) (2025-01-10T13:06:36Z) - Learning Deep Tree-based Retriever for Efficient Recommendation: Theory and Method [76.31185707649227]
効率的なレコメンデーションのために,Deep Tree-based Retriever (DTR)を提案する。
DTRは、トレーニングタスクを、同じレベルでツリーノード上のソフトマックスベースのマルチクラス分類としてフレーム化している。
非リーフノードのラベル付けによって引き起こされる準最適性を緩和するため、損失関数の補正法を提案する。
論文 参考訳(メタデータ) (2024-08-21T05:09:53Z) - Statistical Advantages of Oblique Randomized Decision Trees and Forests [0.0]
リッジ関数のフレキシブル次元縮小モデルクラスに対して一般化誤差と収束率を求める。
軸方向のモンドリアン木のリスクに対する低い境界は、これらの線形次元減少モデルに対してこれらの推定値が最適であることを示す。
論文 参考訳(メタデータ) (2024-07-02T17:35:22Z) - Ensembles of Probabilistic Regression Trees [46.53457774230618]
木に基づくアンサンブル法は多くの応用や研究で回帰問題に成功している。
本研究では,確率分布に関する各領域の観察を割り当てることで,目的関数のスムーズな近似を提供する確率回帰木のアンサンブルバージョンについて検討する。
論文 参考訳(メタデータ) (2024-06-20T06:51:51Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
オンライン相関解析の問題から,emphStochastic Scaled-Gradient Descent (SSD)アルゴリズムを提案する。
我々はこれらのアイデアをオンライン相関解析に適用し、局所収束率を正規性に比例した最適な1時間スケールのアルゴリズムを初めて導いた。
論文 参考訳(メタデータ) (2021-12-29T18:46:52Z) - Modelling hetegeneous treatment effects by quantitle local polynomial
decision tree and forest [0.0]
本稿では,2001年のブレイマンの無作為林木(RFT)とWagerらの因果樹に基づいて,非パラメトリック問題のパラメータ化を行う。
我々は,定式規則による定量分類と局所標本の古典的推定を組み合わせた決定木を提案し,この決定木をQLPRT(quantile local linear causal tree)とQLPRF( Forest)と呼ぶ。
論文 参考訳(メタデータ) (2021-11-30T12:02:16Z) - Minimax Rates for High-Dimensional Random Tessellation Forests [0.0]
モンドリアン林は、任意の次元でミニマックスレートが得られた最初のランダム林である。
概略分割方向を持つ多種多様なランダム林は任意の次元における最小収束率も達成できることを示す。
論文 参考訳(メタデータ) (2021-09-22T06:47:38Z) - Convex Polytope Trees [57.56078843831244]
コンベックスポリトープ木(CPT)は、決定境界の解釈可能な一般化によって決定木の系統を拡張するために提案される。
木構造が与えられたとき,木パラメータに対するCPTおよび拡張性のあるエンドツーエンドトレーニングアルゴリズムを効率的に構築する。
論文 参考訳(メタデータ) (2020-10-21T19:38:57Z) - Stochastic Optimization Forests [60.523606291705214]
標準的なランダムな森林アルゴリズムのように予測精度を向上させるために分割するのではなく、分割を選択した木を栽培し、下流の意思決定品質を直接最適化することで、森林決定政策の訓練方法を示す。
概略分割基準は、各候補分割に対して正確に最適化された森林アルゴリズムに近い性能を保ちながら、100倍のランニング時間を短縮できることを示す。
論文 参考訳(メタデータ) (2020-08-17T16:56:06Z) - Towards Better Understanding of Adaptive Gradient Algorithms in
Generative Adversarial Nets [71.05306664267832]
適応アルゴリズムは勾配の歴史を用いて勾配を更新し、深層ニューラルネットワークのトレーニングにおいてユビキタスである。
本稿では,非コンケーブ最小値問題に対するOptimisticOAアルゴリズムの変種を解析する。
実験の結果,適応型GAN非適応勾配アルゴリズムは経験的に観測可能であることがわかった。
論文 参考訳(メタデータ) (2019-12-26T22:10:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。