論文の概要: Comparison of Neural FEM and Neural Operator Methods for applications in
Solid Mechanics
- arxiv url: http://arxiv.org/abs/2307.02494v1
- Date: Tue, 4 Jul 2023 06:16:43 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-07 16:53:25.719946
- Title: Comparison of Neural FEM and Neural Operator Methods for applications in
Solid Mechanics
- Title(参考訳): 固体力学への応用におけるニューラルfem法とニューラルオペレータ法の比較
- Authors: Stefan Hildebrand, Sandra Klinge
- Abstract要約: 現在の研究は、数値実験によるエラストスタティックスにおける2つのクラス、Neural FEMとNeural Operator Methodsを調査している。
2つのクラスの主な違いは、計算の労力と精度である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Machine Learning methods belong to the group of most up-to-date approaches
for solving partial differential equations. The current work investigates two
classes, Neural FEM and Neural Operator Methods, for the use in elastostatics
by means of numerical experiments. The Neural Operator methods require
expensive training but then allow for solving multiple boundary value problems
with the same Machine Learning model. Main differences between the two classes
are the computational effort and accuracy. Especially the accuracy requires
more research for practical applications.
- Abstract(参考訳): 機械学習手法は偏微分方程式を解くための最も最新のアプローチのグループに属する。
現在の研究は、数値実験によるエラストスタティックスにおける2つのクラス、Neural FEMとNeural Operator Methodsを調査している。
Neural Operatorメソッドは、高価なトレーニングを必要とするが、同じ機械学習モデルで複数の境界値問題を解決することができる。
2つのクラスの主な違いは、計算の労力と精度である。
特に、実用的応用にはさらなる研究が必要である。
関連論文リスト
- Towards Gaussian Process for operator learning: an uncertainty aware resolution independent operator learning algorithm for computational mechanics [8.528817025440746]
本稿では、パラメトリック微分方程式を解くための新しいガウス過程(GP)に基づくニューラル演算子を提案する。
ニューラル演算子を用いて学習した潜在空間でGPカーネルを定式化するニューラル演算子埋め込みカーネル'を提案する。
本研究は, 不確実性評価におけるロバスト性を維持しつつ, 複雑なPDEを解く上で, この枠組みの有効性を強調した。
論文 参考訳(メタデータ) (2024-09-17T08:12:38Z) - Neural Operators with Localized Integral and Differential Kernels [77.76991758980003]
本稿では,2つのフレームワークで局所的な特徴をキャプチャできる演算子学習の原理的アプローチを提案する。
我々はCNNのカーネル値の適切なスケーリングの下で微分演算子を得ることを示す。
局所積分演算子を得るには、離散連続的畳み込みに基づくカーネルの適切な基底表現を利用する。
論文 参考訳(メタデータ) (2024-02-26T18:59:31Z) - What to Do When Your Discrete Optimization Is the Size of a Neural
Network? [24.546550334179486]
ニューラルネットワークを用いた機械学習アプリケーションは、離散最適化問題を解くことを含む。
離散的な設定で使用される古典的なアプローチは、大きなニューラルネットワークに対してうまくスケールしない。
連続経路(CP)法は,前者およびモンテカルロ法(MC)法を純粋に表現し,後者を表現している。
論文 参考訳(メタデータ) (2024-02-15T21:57:43Z) - PICL: Physics Informed Contrastive Learning for Partial Differential Equations [7.136205674624813]
我々は,複数の支配方程式にまたがるニューラル演算子一般化を同時に改善する,新しいコントラスト事前学習フレームワークを開発する。
物理インフォームドシステムの進化と潜在空間モデル出力の組み合わせは、入力データに固定され、我々の距離関数で使用される。
物理インフォームドコントラストプレトレーニングにより,1次元および2次元熱,バーガーズ,線形対流方程式に対する固定フューチャーおよび自己回帰ロールアウトタスクにおけるフーリエニューラル演算子の精度が向上することがわかった。
論文 参考訳(メタデータ) (2024-01-29T17:32:22Z) - Neural Operators for Accelerating Scientific Simulations and Design [85.89660065887956]
Neural Operatorsとして知られるAIフレームワークは、継続的ドメインで定義された関数間のマッピングを学習するための原則的なフレームワークを提供する。
ニューラルオペレータは、計算流体力学、天気予報、物質モデリングなど、多くのアプリケーションで既存のシミュレータを拡張または置き換えることができる。
論文 参考訳(メタデータ) (2023-09-27T00:12:07Z) - Hyena Neural Operator for Partial Differential Equations [9.438207505148947]
ディープラーニングの最近の進歩は、ニューラル演算子の使用を含む偏微分方程式を解くための新しいアプローチをもたらした。
この研究は、多層パーセプトロンによってパラメータ化される長い畳み込みフィルタを使用するHyenaと呼ばれるニューラル演算子を利用する。
この結果から,ハイエナは偏微分方程式解演算器の効率的かつ高精度なモデルとして機能することが示唆された。
論文 参考訳(メタデータ) (2023-06-28T19:45:45Z) - Neural Operator: Is data all you need to model the world? An insight
into the impact of Physics Informed Machine Learning [13.050410285352605]
我々は、データ駆動アプローチが、工学や物理学の問題を解決する従来の手法を補完する方法についての洞察を提供する。
我々は,PDE演算子学習の解演算子を学習するための,新しい,高速な機械学習に基づくアプローチを強調した。
論文 参考訳(メタデータ) (2023-01-30T23:29:33Z) - Neural Operator: Learning Maps Between Function Spaces [75.93843876663128]
本稿では,無限次元関数空間間を写像する演算子,いわゆるニューラル演算子を学習するためのニューラルネットワークの一般化を提案する。
提案したニューラル作用素に対して普遍近似定理を証明し、任意の非線形連続作用素を近似することができることを示す。
ニューラル作用素に対する重要な応用は、偏微分方程式の解作用素に対する代理写像を学習することである。
論文 参考訳(メタデータ) (2021-08-19T03:56:49Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
ディープニューラルネットワークと互換性のあるアクティブな学習アルゴリズムの必要性が高まっている。
本稿では,ニューラルネットワークのための抽出可能かつ高性能な能動学習アルゴリズムBAITを紹介する。
論文 参考訳(メタデータ) (2021-06-17T17:26:31Z) - Fourier Neural Operator for Parametric Partial Differential Equations [57.90284928158383]
積分カーネルを直接フーリエ空間でパラメータ化することで、新しいニューラル演算子を定式化する。
バーガースの方程式、ダーシー流、ナビエ・ストークス方程式の実験を行う。
従来のPDEソルバに比べて最大3桁高速である。
論文 参考訳(メタデータ) (2020-10-18T00:34:21Z) - Large-scale Neural Solvers for Partial Differential Equations [48.7576911714538]
偏微分方程式 (PDE) を解くことは、多くのプロセスがPDEの観点でモデル化できるため、科学の多くの分野において不可欠である。
最近の数値解法では、基礎となる方程式を手動で離散化するだけでなく、分散コンピューティングのための高度で調整されたコードも必要である。
偏微分方程式, 物理インフォームドニューラルネットワーク(PINN)に対する連続メッシュフリーニューラルネットワークの適用性について検討する。
本稿では,解析解に関するGatedPINNの精度と,スペクトル解法などの最先端数値解法について論じる。
論文 参考訳(メタデータ) (2020-09-08T13:26:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。