論文の概要: Dequantizing quantum machine learning models using tensor networks
- arxiv url: http://arxiv.org/abs/2307.06937v2
- Date: Thu, 21 Dec 2023 14:50:23 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-22 18:42:39.495707
- Title: Dequantizing quantum machine learning models using tensor networks
- Title(参考訳): テンソルネットワークを用いた量子機械学習モデルの定式化
- Authors: Seongwook Shin, Yong Siah Teo, and Hyunseok Jeong
- Abstract要約: 本稿では,変分量子機械学習(VQML)モデルの関数クラスの復号性について紹介する。
我々の定式化は、VQMLモデルの真の量子特性に応じて適切に区別できることを示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ascertaining whether a classical model can efficiently replace a given
quantum model -- dequantization -- is crucial in assessing the true potential
of quantum algorithms. In this work, we introduced the dequantizability of the
function class of variational quantum-machine-learning~(VQML) models by
employing the tensor network formalism, effectively identifying every VQML
model as a subclass of matrix product state (MPS) model characterized by
constrained coefficient MPS and tensor product-based feature maps. From this
formalism, we identify the conditions for which a VQML model's function class
is dequantizable or not. Furthermore, we introduce an efficient quantum
kernel-induced classical kernel which is as expressive as given any quantum
kernel, hinting at a possible way to dequantize quantum kernel methods. This
presents a thorough analysis of VQML models and demonstrates the versatility of
our tensor-network formalism to properly distinguish VQML models according to
their genuine quantum characteristics, thereby unifying classical and quantum
machine-learning models within a single framework.
- Abstract(参考訳): 古典モデルが与えられた量子モデル -- 脱量子化 -- を効率的に置き換えることができるかどうかを確認することは、量子アルゴリズムの真のポテンシャルを評価する上で重要である。
本研究では、テンソルネットワークフォーマリズムを用いて、変動量子機械学習~(VQML)モデルの関数クラスを定式化し、全てのVQMLモデルを制約係数MPSとテンソル積に基づく特徴写像を特徴付ける行列積状態(MPS)モデルのサブクラスとして効果的に同定する。
この形式主義から、VQMLモデルの関数クラスが等化可能か否かの条件を特定する。
さらに,任意の量子カーネルと同等の表現力を持つ効率的な量子カーネル誘導古典カーネルを導入し,量子カーネル法を解量化する方法を示唆する。
本稿では、VQMLモデルの徹底的な解析を行い、量子特性に応じてVQMLモデルを適切に識別するテンソルネットワーク形式の有効性を示し、単一のフレームワーク内で古典的および量子機械学習モデルを統一する。
関連論文リスト
- Ground state-based quantum feature maps [17.857341127079305]
パラメータ化ハミルトンの基底状態の合成に基づく量子データ埋め込みプロトコルを提案する。
基底状態の埋め込みは、量子ビットの数で急速に増加するスペクトルで効果的に記述できることを示す。
論文 参考訳(メタデータ) (2024-04-10T17:17:05Z) - Learning hard distributions with quantum-enhanced Variational
Autoencoders [2.545905720487589]
量子相関を用いて古典的VAEの忠実度を向上させる量子強化型VAE(QeVAE)を提案する。
経験的に、QeVAEは量子状態のいくつかのクラスにおいて古典的モデルよりも優れていることを示す。
我々の研究は、量子生成学習アルゴリズムの新しい応用の道を開いた。
論文 参考訳(メタデータ) (2023-05-02T16:50:24Z) - A Framework for Demonstrating Practical Quantum Advantage: Racing
Quantum against Classical Generative Models [62.997667081978825]
生成モデルの一般化性能を評価するためのフレームワークを構築した。
古典的および量子生成モデル間の実用的量子優位性(PQA)に対する最初の比較レースを確立する。
以上の結果から,QCBMは,他の最先端の古典的生成モデルよりも,データ制限方式の方が効率的であることが示唆された。
論文 参考訳(メタデータ) (2023-03-27T22:48:28Z) - The Quantum Path Kernel: a Generalized Quantum Neural Tangent Kernel for
Deep Quantum Machine Learning [52.77024349608834]
古典的なディープニューラルネットワークの量子アナログを構築することは、量子コンピューティングにおける根本的な課題である。
鍵となる問題は、古典的なディープラーニングの本質的な非線形性にどのように対処するかである。
我々は、深層機械学習のこれらの側面を複製できる量子機械学習の定式化であるQuantum Path Kernelを紹介する。
論文 参考訳(メタデータ) (2022-12-22T16:06:24Z) - Towards Neural Variational Monte Carlo That Scales Linearly with System
Size [67.09349921751341]
量子多体問題(Quantum many-body problem)は、例えば高温超伝導体のようなエキゾチックな量子現象をデミストする中心である。
量子状態を表すニューラルネットワーク(NN)と変分モンテカルロ(VMC)アルゴリズムの組み合わせは、そのような問題を解決する上で有望な方法であることが示されている。
ベクトル量子化技術を用いて,VMCアルゴリズムの局所エネルギー計算における冗長性を利用するNNアーキテクチャVector-Quantized Neural Quantum States (VQ-NQS)を提案する。
論文 参考訳(メタデータ) (2022-12-21T19:00:04Z) - Impact of the form of weighted networks on the quantum extreme reservoir computation [0.0]
量子極端貯水池計算(QERC)は、汎用的な量子ニューラルネットワークモデルである。
本稿では,その簡単な実装経路を持つ乱れ離散時間結晶に基づく単純なハミルトンモデルが,ほぼ最適性能を実現する方法を示す。
論文 参考訳(メタデータ) (2022-11-15T01:50:47Z) - Theory of Quantum Generative Learning Models with Maximum Mean
Discrepancy [67.02951777522547]
量子回路ボルンマシン(QCBM)と量子生成逆ネットワーク(QGAN)の学習可能性について検討する。
まず、QCBMの一般化能力を解析し、量子デバイスがターゲット分布に直接アクセスできる際の優位性を同定する。
次に、QGANの一般化誤差境界が、採用されるAnsatz、クォーディットの数、入力状態に依存することを示す。
論文 参考訳(メタデータ) (2022-05-10T08:05:59Z) - Generalization Metrics for Practical Quantum Advantage in Generative
Models [68.8204255655161]
生成モデリングは量子コンピュータにとって広く受け入れられている自然のユースケースである。
我々は,アルゴリズムの一般化性能を計測して,生成モデリングのための実用的な量子優位性を探索する,単純で曖昧な手法を構築した。
シミュレーションの結果、我々の量子にインスパイアされたモデルは、目に見えない、有効なサンプルを生成するのに、最大で68倍の費用がかかります。
論文 参考訳(メタデータ) (2022-01-21T16:35:35Z) - An Application of Quantum Machine Learning on Quantum Correlated
Systems: Quantum Convolutional Neural Network as a Classifier for Many-Body
Wavefunctions from the Quantum Variational Eigensolver [0.0]
最近提案された量子畳み込みニューラルネットワーク(QCNN)は、量子回路を使用するための新しいフレームワークを提供する。
ここでは、一次元逆場イジングモデル(TFIM)に対する変分量子固有解器の波動関数によるQCNNのトレーニング結果を示す。
QCNNは、それから遠く離れた波動関数によって訓練されたとしても、量子臨界点の周りの波動関数の対応する位相を予測するために訓練することができる。
論文 参考訳(メタデータ) (2021-11-09T12:08:49Z) - Structural risk minimization for quantum linear classifiers [0.0]
qml(quantum machine learning)は、量子コンピューティングの短期的"キラーアプリケーション"の典型的な候補の1つとして注目される。
明示的および暗黙的量子線形分類器と呼ばれる2つの密接に関連したQMLモデルの容量測定を研究する。
我々は,QMLモデルで使用される観測値のランクとフロベニウスノルムが,モデルのキャパシティを密接に制御していることを確認した。
論文 参考訳(メタデータ) (2021-05-12T10:39:55Z) - Quantum Machine Learning with SQUID [64.53556573827525]
分類問題に対するハイブリッド量子古典アルゴリズムを探索するオープンソースフレームワークであるScaled QUantum IDentifier (SQUID)を提案する。
本稿では、一般的なMNISTデータセットから標準バイナリ分類問題にSQUIDを使用する例を示す。
論文 参考訳(メタデータ) (2021-04-30T21:34:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。