論文の概要: Large Language Models at Work in China's Labor Market
- arxiv url: http://arxiv.org/abs/2308.08776v1
- Date: Thu, 17 Aug 2023 04:20:36 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-21 17:53:21.854468
- Title: Large Language Models at Work in China's Labor Market
- Title(参考訳): 中国の労働市場における大規模言語モデル
- Authors: Qin Chen, Jinfeng Ge, Huaqing Xie, Xingcheng Xu, Yanqing Yang
- Abstract要約: 本稿では,中国労働市場における大規模言語モデル(LLM)の潜在的影響について考察する。
その結果,職業曝露と賃金水準・経験年金との正の相関が示唆された。
また、AI導入による生産性と雇用のトレードオフを定量化するために、産業の露出を取り入れた経済成長モデルも開発しています。
- 参考スコア(独自算出の注目度): 4.19966590731593
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the potential impacts of large language models (LLMs) on
the Chinese labor market. We analyze occupational exposure to LLM capabilities
by incorporating human expertise and LLM classifications, following Eloundou et
al. (2023)'s methodology. We then aggregate occupation exposure to the industry
level to obtain industry exposure scores. The results indicate a positive
correlation between occupation exposure and wage levels/experience premiums,
suggesting higher-paying and experience-intensive jobs may face greater
displacement risks from LLM-powered software. The industry exposure scores
align with expert assessments and economic intuitions. We also develop an
economic growth model incorporating industry exposure to quantify the
productivity-employment trade-off from AI adoption. Overall, this study
provides an analytical basis for understanding the labor market impacts of
increasingly capable AI systems in China. Key innovations include the
occupation-level exposure analysis, industry aggregation approach, and economic
modeling incorporating AI adoption and labor market effects. The findings will
inform policymakers and businesses on strategies for maximizing the benefits of
AI while mitigating adverse disruption risks.
- Abstract(参考訳): 本稿では,中国労働市場における大規模言語モデル(LLM)の潜在的影響について考察する。
Eloundou et al. (2023) の方法論に従って,人間の専門知識と LLM 分類を取り入れた LLM 機能への職業的露出の分析を行った。
次に産業レベルへの職業曝露を集約し、産業曝露スコアを得る。
その結果、職業曝露と賃金水準・経験年金との正の相関が示され、高い賃金と経験集約的な仕事がLCMソフトウェアによる転職リスクが増大する可能性が示唆された。
業界曝露スコアは専門家の評価や経済直観と一致している。
また、AI導入による生産性と雇用のトレードオフを定量化するために、産業の露出を取り入れた経済成長モデルも開発しています。
本研究は、中国におけるAIシステムの労働市場への影響を理解するための分析的基盤を提供する。
主なイノベーションは、職業レベルの露出分析、産業集約アプローチ、ai導入と労働市場効果を組み込んだ経済モデリングなどである。
この調査結果は、aiの利益を最大化し、有害な破壊リスクを緩和するための戦略を政策立案者や企業に提供する。
関連論文リスト
- Bias in Large Language Models: Origin, Evaluation, and Mitigation [4.606140332500086]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、バイアスへの感受性は大きな課題となっている。
本総説では, LLMの発端から現在の緩和戦略まで, バイアスの背景を概観する。
偏りのあるLLMの倫理的および法的含意について論じ、医療や刑事司法のような現実の応用における潜在的な害を強調した。
論文 参考訳(メタデータ) (2024-11-16T23:54:53Z) - Persuasion with Large Language Models: a Survey [49.86930318312291]
大規模言語モデル (LLM) は説得力のあるコミュニケーションに新たな破壊的可能性を生み出している。
政治、マーケティング、公衆衛生、電子商取引、慈善事業などの分野では、LLMシステムズは既に人間レベルや超人的説得力を達成している。
LLMをベースとした説得の現在と将来の可能性は、倫理的・社会的リスクを著しく引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-11T10:05:52Z) - MMAD: The First-Ever Comprehensive Benchmark for Multimodal Large Language Models in Industrial Anomaly Detection [66.05200339481115]
本稿では,産業異常検出における最初のフルスペクトルMLLMベンチマークであるMMADを提案する。
産業検査におけるMLLMの7つの重要なサブタスクを定義し,MMADデータセットを生成するための新しいパイプラインを設計した。
MMADを用いて,様々な最先端MLLMの包括的,定量的評価を行った。
論文 参考訳(メタデータ) (2024-10-12T09:16:09Z) - Automatic generation of insights from workers' actions in industrial workflows with explainable Machine Learning [6.354358255072839]
労働者の生産性に正確に匹敵するものは存在しない。
製造プロセスからのデータと作業者のパフォーマンスを組み合わせたMLソリューションが必要である。
本稿では、専門家と専門家の区別に説明可能なMLを適用することを提案する。
論文 参考訳(メタデータ) (2024-06-18T15:55:11Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
大規模言語モデル(LLM)は、金融、医療、法律の展望に革命をもたらしている。
我々は、医療における診断・治療方法論の強化、財務分析の革新、法的解釈・コンプライアンス戦略の精査におけるLCMの役割を強調した。
これらの分野におけるLLMアプリケーションの倫理を批判的に検討し、既存の倫理的懸念と透明で公平で堅牢なAIシステムの必要性を指摘した。
論文 参考訳(メタデータ) (2024-05-02T22:43:02Z) - Beyond Human Norms: Unveiling Unique Values of Large Language Models through Interdisciplinary Approaches [69.73783026870998]
本研究では,大言語モデルの固有値システムをスクラッチから再構築する新しいフレームワークであるValueLexを提案する。
語彙仮説に基づいて、ValueLexは30以上のLLMから様々な値を引き出すための生成的アプローチを導入している。
我々は,3つのコア値次元,能力,キャラクタ,積分をそれぞれ特定の部分次元で同定し,LLMが非人間的だが構造化された価値体系を持っていることを明らかにした。
論文 参考訳(メタデータ) (2024-04-19T09:44:51Z) - ExpeL: LLM Agents Are Experiential Learners [60.54312035818746]
実験学習エージェント(ExpeL)を導入し、パラメトリック更新を必要とせずにエージェント体験から学習できるようにする。
我々のエージェントは、経験を自律的に収集し、学習課題の集合から自然言語を用いて知識を抽出する。
推論において、エージェントは抽出された洞察と過去の経験をリコールし、情報的決定を行う。
論文 参考訳(メタデータ) (2023-08-20T03:03:34Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Industry Risk Assessment via Hierarchical Financial Data Using Stock Market Sentiment Indicators [0.9463895540925061]
本稿では,実時間株式市場データと生成小言語モデル(SLM)を活用した産業動向の分析手法を提案する。
重要な課題の1つは、生データの固有のノイズであり、統計分析の精度を損なう可能性がある。
本稿では,業界トレンド分析における二段階的アプローチとして,明示的および暗黙的分析を提案する。
論文 参考訳(メタデータ) (2023-03-05T16:17:56Z) - Practical Skills Demand Forecasting via Representation Learning of
Temporal Dynamics [4.536775100566484]
急速な技術革新は、世界の労働力の多くを置き去りにする恐れがある。
政府や市場は、スキルの供給が需要の変化に反応する速度を早める方法を見つけなければならない。
本稿では,10年間の月次技術需要観測を用いて,複数段階の予測を未来に向けて一斉に行うパイプラインを提案する。
論文 参考訳(メタデータ) (2022-05-18T04:02:55Z) - AI and Shared Prosperity [0.0]
人間の労働を自動化するAIの今後の進歩は、労働市場や不平等に深刻な影響を及ぼす可能性がある。
本稿では,労働市場における特定のタイプのAIシステムの効果を,労働需要がどれだけの規模で生み出すかによって分析する枠組みを提案する。
論文 参考訳(メタデータ) (2021-05-18T12:37:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。