論文の概要: Large Language Models at Work in China's Labor Market
- arxiv url: http://arxiv.org/abs/2308.08776v2
- Date: Sun, 04 May 2025 16:12:32 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:34.884953
- Title: Large Language Models at Work in China's Labor Market
- Title(参考訳): 中国の労働市場における大規模言語モデル
- Authors: Qin Chen, Jinfeng Ge, Huaqing Xie, Xingcheng Xu, Yanqing Yang,
- Abstract要約: 本稿では,中国労働市場における大規模言語モデル(LLM)の潜在的影響について考察する。
その結果,職業曝露と賃金水準と職業水準での体験料との間には正の相関があることが示唆された。
そして、産業レベルでの職業的露出を集約し、工業的露出スコアを得る。
- 参考スコア(独自算出の注目度): 3.9145097124275257
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper explores the potential impacts of large language models (LLMs) on the Chinese labor market. We analyze occupational exposure to LLM capabilities by incorporating human expertise and LLM classifications, following the methodology of Eloundou et al. (2023). The results indicate a positive correlation between occupational exposure and both wage levels and experience premiums at the occupation level. This suggests that higher-paying and experience-intensive jobs may face greater exposure risks from LLM-powered software. We then aggregate occupational exposure at the industry level to obtain industrial exposure scores. Both occupational and industrial exposure scores align with expert assessments. Our empirical analysis also demonstrates a distinct impact of LLMs, which deviates from the routinization hypothesis. We present a stylized theoretical framework to better understand this deviation from previous digital technologies. By incorporating entropy-based information theory into the task-based framework, we propose an AI learning theory that reveals a different pattern of LLM impacts compared to the routinization hypothesis.
- Abstract(参考訳): 本稿では,中国労働市場における大規模言語モデル(LLM)の潜在的影響について考察する。
我々は,Eloundou et al (2023)の方法論に従って,人間の専門知識とLLM分類を取り入れたLLM能力の職業的露出を分析した。
その結果,職業曝露と賃金水準と職業水準での体験料との間には正の相関が認められた。
このことは、高い支払いと経験集約型ジョブが、LCMベースのソフトウェアによる露出リスクの増大に直面していることを示唆している。
そして、産業レベルでの職業的露出を集約し、工業的露出スコアを得る。
職業と産業の露出スコアは専門家の評価と一致している。
我々の経験的分析は、ルビン化仮説から逸脱するLSMの明確な影響も示している。
我々は、従来のデジタル技術との違いをよりよく理解するための、スタイリングされた理論的枠組みを提案する。
エントロピーに基づく情報理論をタスクベースフレームワークに組み込むことで、ルビン化仮説と比較してLLMの影響の異なるパターンを明らかにするAI学習理論を提案する。
関連論文リスト
- An Overview of Large Language Models for Statisticians [109.38601458831545]
大規模言語モデル(LLM)は人工知能(AI)の変換ツールとして登場した。
本稿では, 統計学者がLLMの開発に重要な貢献できる可能性について考察する。
我々は不確実性定量化、解釈可能性、公正性、プライバシー、透かし、モデル適応といった問題に焦点を当てる。
論文 参考訳(メタデータ) (2025-02-25T03:40:36Z) - Follow the money: a startup-based measure of AI exposure across occupations, industries and regions [0.0]
既存のAIの職業曝露対策は、技術的実現可能性に基づいて人間の労働を代用または補うAIの理論的可能性に焦点を当てている。
我々は,O*NETとスタートアップが開発したAIアプリケーションからの職業的記述に基づく,新たな指標であるAISE(AI Startup Exposure)指標を紹介する。
我々の発見は、AIの採用は、AIアプリケーションの技術的実現可能性と同様に、社会的要因によって徐々に形成されていくことを示唆している。
論文 参考訳(メタデータ) (2024-12-06T10:25:05Z) - Bias in Large Language Models: Origin, Evaluation, and Mitigation [4.606140332500086]
大規模言語モデル(LLM)は自然言語処理に革命をもたらしたが、バイアスへの感受性は大きな課題となっている。
本総説では, LLMの発端から現在の緩和戦略まで, バイアスの背景を概観する。
偏りのあるLLMの倫理的および法的含意について論じ、医療や刑事司法のような現実の応用における潜在的な害を強調した。
論文 参考訳(メタデータ) (2024-11-16T23:54:53Z) - Persuasion with Large Language Models: a Survey [49.86930318312291]
大規模言語モデル (LLM) は説得力のあるコミュニケーションに新たな破壊的可能性を生み出している。
政治、マーケティング、公衆衛生、電子商取引、慈善事業などの分野では、LLMシステムズは既に人間レベルや超人的説得力を達成している。
LLMをベースとした説得の現在と将来の可能性は、倫理的・社会的リスクを著しく引き起こす可能性が示唆された。
論文 参考訳(メタデータ) (2024-11-11T10:05:52Z) - MMAD: The First-Ever Comprehensive Benchmark for Multimodal Large Language Models in Industrial Anomaly Detection [66.05200339481115]
本稿では,産業異常検出における最初のフルスペクトルMLLMベンチマークであるMMADを提案する。
産業検査におけるMLLMの7つの重要なサブタスクを定義し,MMADデータセットを生成するための新しいパイプラインを設計した。
MMADを用いて,様々な最先端MLLMの包括的,定量的評価を行った。
論文 参考訳(メタデータ) (2024-10-12T09:16:09Z) - Automatic generation of insights from workers' actions in industrial workflows with explainable Machine Learning [6.354358255072839]
労働者の生産性に正確に匹敵するものは存在しない。
製造プロセスからのデータと作業者のパフォーマンスを組み合わせたMLソリューションが必要である。
本稿では、専門家と専門家の区別に説明可能なMLを適用することを提案する。
論文 参考訳(メタデータ) (2024-06-18T15:55:11Z) - A Survey on Large Language Models for Critical Societal Domains: Finance, Healthcare, and Law [65.87885628115946]
大規模言語モデル(LLM)は、金融、医療、法律の展望に革命をもたらしている。
我々は、医療における診断・治療方法論の強化、財務分析の革新、法的解釈・コンプライアンス戦略の精査におけるLCMの役割を強調した。
これらの分野におけるLLMアプリケーションの倫理を批判的に検討し、既存の倫理的懸念と透明で公平で堅牢なAIシステムの必要性を指摘した。
論文 参考訳(メタデータ) (2024-05-02T22:43:02Z) - Beyond Human Norms: Unveiling Unique Values of Large Language Models through Interdisciplinary Approaches [69.73783026870998]
本研究では,大言語モデルの固有値システムをスクラッチから再構築する新しいフレームワークであるValueLexを提案する。
語彙仮説に基づいて、ValueLexは30以上のLLMから様々な値を引き出すための生成的アプローチを導入している。
我々は,3つのコア値次元,能力,キャラクタ,積分をそれぞれ特定の部分次元で同定し,LLMが非人間的だが構造化された価値体系を持っていることを明らかにした。
論文 参考訳(メタデータ) (2024-04-19T09:44:51Z) - ExpeL: LLM Agents Are Experiential Learners [60.54312035818746]
実験学習エージェント(ExpeL)を導入し、パラメトリック更新を必要とせずにエージェント体験から学習できるようにする。
我々のエージェントは、経験を自律的に収集し、学習課題の集合から自然言語を用いて知識を抽出する。
推論において、エージェントは抽出された洞察と過去の経験をリコールし、情報的決定を行う。
論文 参考訳(メタデータ) (2023-08-20T03:03:34Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - Industry Risk Assessment via Hierarchical Financial Data Using Stock Market Sentiment Indicators [0.9463895540925061]
本稿では,実時間株式市場データと生成小言語モデル(SLM)を活用した産業動向の分析手法を提案する。
重要な課題の1つは、生データの固有のノイズであり、統計分析の精度を損なう可能性がある。
本稿では,業界トレンド分析における二段階的アプローチとして,明示的および暗黙的分析を提案する。
論文 参考訳(メタデータ) (2023-03-05T16:17:56Z) - Practical Skills Demand Forecasting via Representation Learning of
Temporal Dynamics [4.536775100566484]
急速な技術革新は、世界の労働力の多くを置き去りにする恐れがある。
政府や市場は、スキルの供給が需要の変化に反応する速度を早める方法を見つけなければならない。
本稿では,10年間の月次技術需要観測を用いて,複数段階の予測を未来に向けて一斉に行うパイプラインを提案する。
論文 参考訳(メタデータ) (2022-05-18T04:02:55Z) - AI and Shared Prosperity [0.0]
人間の労働を自動化するAIの今後の進歩は、労働市場や不平等に深刻な影響を及ぼす可能性がある。
本稿では,労働市場における特定のタイプのAIシステムの効果を,労働需要がどれだけの規模で生み出すかによって分析する枠組みを提案する。
論文 参考訳(メタデータ) (2021-05-18T12:37:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。