論文の概要: Bayesian polynomial neural networks and polynomial neural ordinary
differential equations
- arxiv url: http://arxiv.org/abs/2308.10892v1
- Date: Thu, 17 Aug 2023 05:42:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-22 12:18:06.385963
- Title: Bayesian polynomial neural networks and polynomial neural ordinary
differential equations
- Title(参考訳): ベイズ多項式ニューラルネットワークと多項式神経常微分方程式
- Authors: Colby Fronk and Jaewoong Yun and Prashant Singh and Linda Petzold
- Abstract要約: ニューラルネットワークとニューラル常微分方程式(ODE)によるシンボリック回帰は、多くの科学・工学問題の方程式回復のための強力なアプローチである。
これらの手法はモデルパラメータの点推定を提供しており、現在ノイズの多いデータに対応できない。
この課題は、ラプラス近似、マルコフ連鎖モンテカルロサンプリング法、ベイズ変分推定法の開発と検証によって解決される。
- 参考スコア(独自算出の注目度): 4.550705124365277
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Symbolic regression with polynomial neural networks and polynomial neural
ordinary differential equations (ODEs) are two recent and powerful approaches
for equation recovery of many science and engineering problems. However, these
methods provide point estimates for the model parameters and are currently
unable to accommodate noisy data. We address this challenge by developing and
validating the following Bayesian inference methods: the Laplace approximation,
Markov Chain Monte Carlo (MCMC) sampling methods, and variational inference. We
have found the Laplace approximation to be the best method for this class of
problems. Our work can be easily extended to the broader class of symbolic
neural networks to which the polynomial neural network belongs.
- Abstract(参考訳): 多項式ニューラルネットワークと多項式ニューラル常微分方程式(odes)を用いた記号回帰は、多くの科学および工学問題の方程式回復のための近年の2つの強力なアプローチである。
しかし、これらの手法はモデルパラメータの点推定を提供し、現在ノイズデータに対応できない。
我々は,ラプラス近似法,マルコフ連鎖モンテカルロサンプリング法,変分推論法などのベイズ推定法を開発し検証することで,この問題に対処した。
ラプラス近似は,この問題に対する最善の方法であることがわかった。
我々の研究は、多項式ニューラルネットワークが属するより広範な記号型ニューラルネットワークに容易に拡張できる。
関連論文リスト
- Chebyshev Spectral Neural Networks for Solving Partial Differential Equations [0.0]
この研究は、フィードフォワードニューラルネットワークモデルとエラーバックプロパゲーション原理を用いて、損失関数の計算に自動微分(AD)を利用する。
楕円偏微分方程式を用いて,CSNNモデルの数値効率と精度について検討し,よく知られた物理インフォームドニューラルネットワーク(PINN)法と比較した。
論文 参考訳(メタデータ) (2024-06-06T05:31:45Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
高次元ポアソン方程式の効率的な解法としてニューラルウォーク・オン・スフェース(NWoS)を提案する。
我々は,NWoSの精度,速度,計算コストにおける優位性を実証した。
論文 参考訳(メタデータ) (2024-06-05T17:59:22Z) - NeuralEF: Deconstructing Kernels by Deep Neural Networks [47.54733625351363]
従来のNystr"om式に基づく非パラメトリックなソリューションはスケーラビリティの問題に悩まされる。
最近の研究はパラメトリックなアプローチ、すなわち固有関数を近似するためにニューラルネットワークを訓練している。
教師なしおよび教師なしの学習問題の空間に一般化する新たな目的関数を用いて,これらの問題を解くことができることを示す。
論文 参考訳(メタデータ) (2022-04-30T05:31:07Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Meta-Solver for Neural Ordinary Differential Equations [77.8918415523446]
本研究では,ソルバ空間の変動がニューラルODEの性能を向上する方法について検討する。
解法パラメータ化の正しい選択は, 敵の攻撃に対するロバスト性の観点から, 神経odesモデルに大きな影響を与える可能性がある。
論文 参考訳(メタデータ) (2021-03-15T17:26:34Z) - Towards a mathematical framework to inform Neural Network modelling via
Polynomial Regression [0.0]
特定の条件が局所的に満たされた場合、ほぼ同一の予測が可能であることが示されている。
生成したデータから学習すると,そのデータを局所的に近似的に生成する。
論文 参考訳(メタデータ) (2021-02-07T17:56:16Z) - Computational characteristics of feedforward neural networks for solving
a stiff differential equation [0.0]
減衰系をモデル化する単純だが基本的な常微分方程式の解について検討する。
パラメータやメソッドに対して好適な選択を特定できることを示す。
全体として、ニューラルネットワークアプローチによる信頼性と正確な結果を得るために何ができるかを示すことで、この分野の現在の文献を拡張します。
論文 参考訳(メタデータ) (2020-12-03T12:22:24Z) - Unsupervised Learning of Solutions to Differential Equations with
Generative Adversarial Networks [1.1470070927586016]
本研究では,教師なしニューラルネットワークを用いた微分方程式の解法を開発した。
差分方程式GAN (DEQGAN) と呼ばれる手法は, 平均二乗誤差を桁違いに低減できることを示す。
論文 参考訳(メタデータ) (2020-07-21T23:36:36Z) - Disentangling the Gauss-Newton Method and Approximate Inference for
Neural Networks [96.87076679064499]
我々は一般化されたガウスニュートンを解き、ベイズ深層学習の近似推論を行う。
ガウス・ニュートン法は基礎となる確率モデルを大幅に単純化する。
ガウス過程への接続は、新しい関数空間推論アルゴリズムを可能にする。
論文 参考訳(メタデータ) (2020-07-21T17:42:58Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。