論文の概要: AI-Based Facial Emotion Recognition Solutions for Education: A Study of
Teacher-User and Other Categories
- arxiv url: http://arxiv.org/abs/2308.15119v1
- Date: Tue, 29 Aug 2023 08:37:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-30 15:09:00.383269
- Title: AI-Based Facial Emotion Recognition Solutions for Education: A Study of
Teacher-User and Other Categories
- Title(参考訳): AIに基づく教育用表情認識ソリューション--教師と他のカテゴリーの検討
- Authors: R. Yamamoto Ravenor
- Abstract要約: 本論文は主に、FERツールの(潜在的)教師・ユーザを対象としている。
本研究は、感情的な教育目的の古典的な分類に基づく、配向、条件、嗜好に基づく、これらの教師の3つの部分分類を提案する。
また、提案された "Teacher-user" カテゴリを構築するための前提条件として、文献から見いだされたFERソリューションのタイプを "Technology" と "applications" カテゴリにコンパイルし、整理する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Existing information on AI-based facial emotion recognition (FER) is not
easily comprehensible by those outside the field of computer science, requiring
cross-disciplinary effort to determine a categorisation framework that promotes
the understanding of this technology, and its impact on users. Most proponents
classify FER in terms of methodology, implementation and analysis; relatively
few by its application in education; and none by its users. This paper is
concerned primarily with (potential) teacher-users of FER tools for education.
It proposes a three-part classification of these teachers, by orientation,
condition and preference, based on a classical taxonomy of affective
educational objectives, and related theories. It also compiles and organises
the types of FER solutions found in or inferred from the literature into
"technology" and "applications" categories, as a prerequisite for structuring
the proposed "teacher-user" category. This work has implications for
proponents', critics', and users' understanding of the relationship between
teachers and FER.
- Abstract(参考訳): 既存のAIベースの顔の感情認識(FER)に関する情報は、コンピュータ科学以外の分野では容易には理解できない。
ほとんどの支持者はFERを方法論、実装、分析の点で分類し、教育における応用は比較的少ない。
本論文は主に、FERツールの教師(潜在的)ユーザに関するものである。
本研究は,情緒的教育目標の古典分類と関連する理論に基づいて,教師の向き,条件,選好による3部分類を提案する。
また、提案された「教師-ユーザ」カテゴリを構造化するための前提条件として、文献から見出されたferソリューションのタイプを「技術」と「アプリケーション」のカテゴリにまとめ、整理する。
本研究は, 教師とferの関係について, 支持者, 批判者, 利用者の理解に影響を及ぼすものである。
関連論文リスト
- A Systematic Review of Generative AI for Teaching and Learning Practice [0.37282630026096586]
高等教育におけるGenAIシステムの利用に関するガイドラインは合意されていない。
HEにおける学際的・多次元的な研究は、共同研究を通じて必要である。
論文 参考訳(メタデータ) (2024-06-13T18:16:27Z) - AI and Machine Learning for Next Generation Science Assessments [0.7416846035207727]
この章は、科学評価における人工知能(AI)と機械学習(ML)の変革的な役割に焦点を当てている。
論文は、概念学習からナレッジ・イン・ユースへのシフトを求めるK-12サイエンス教育フレームワークの議論から始まる。
本論文は,理科教育におけるMLベースアセスメントの現状の見直し,MLベース自動アセスメントにおける精度評価フレームワークの導入,今後の方向性と課題の議論という,3つの大きな目標を達成している。
論文 参考訳(メタデータ) (2024-04-23T01:39:20Z) - Understanding the Progression of Educational Topics via Semantic Matching [0.9246281666115259]
教育システムは、技術進歩、工業的、社会的ニーズに適応し、学生の学習行動を強化するために、動的に変化している。
カリキュラムスペシャリストや教育者は、学年ごとの教科を常に改訂し、ギャップを特定し、新しい学習トピックを導入し、学習結果を強化する。
データセット内に構築された主題、トピック、学習結果に関する微妙なデータを持つことで、データサイエンスを活用して、さまざまな学習トピックの進捗をよりよく理解することが可能になる。
論文 参考訳(メタデータ) (2024-02-10T08:24:29Z) - Identifying Student Profiles Within Online Judge Systems Using
Explainable Artificial Intelligence [6.638206014723678]
オンライン審査員(OJ)システムは通常、学生によって開発されたコードの高速かつ客観的な評価を得られるため、プログラミング関連のコースの中で考慮される。
本研究の目的は,OJが収集した情報のさらなる活用を考慮し,学生とインストラクターの両方のフィードバックを自動的に推測することで,この制限に対処することである。
論文 参考訳(メタデータ) (2024-01-29T12:11:30Z) - PapagAI:Automated Feedback for Reflective Essays [48.4434976446053]
ドクティック理論をベースとして,ハイブリッドAIシステムとして実装された,初のオープンソース自動フィードバックツールを提案する。
本研究の主な目的は,学生の学習成果の向上と,講師の指導活動を補完することである。
論文 参考訳(メタデータ) (2023-07-10T11:05:51Z) - Fairness meets Cross-Domain Learning: a new perspective on Models and
Metrics [80.07271410743806]
クロスドメイン学習(CD)とモデルフェアネスの関係について検討する。
いくつかの人口集団にまたがる顔画像と医療画像のベンチマークと、分類とローカライゼーションタスクについて紹介する。
本研究は,3つの最先端フェアネスアルゴリズムとともに,14のCDアプローチをカバーし,前者が後者に勝ることを示す。
論文 参考訳(メタデータ) (2023-03-25T09:34:05Z) - Evaluation of Self-taught Learning-based Representations for Facial
Emotion Recognition [62.30451764345482]
この研究は、顔の感情認識のための自己学習の概念を通じて得られた教師なし表現を生成するための様々な戦略を記述する。
このアイデアは、オートエンコーダの初期化、アーキテクチャ、トレーニングデータを変化させることで、多様性を促進する補完的な表現を作ることである。
Jaffe と Cohn-Kanade のデータセットに対する残余のサブジェクトアウトプロトコルによる実験結果から,提案した多種多様な表現に基づく FER 手法が最先端のアプローチと好適に比較できることが示唆された。
論文 参考訳(メタデータ) (2022-04-26T22:48:15Z) - Demonstrating REACT: a Real-time Educational AI-powered Classroom Tool [0.9899017174990579]
本稿では,教育者の意思決定プロセスを支援するために,EDM技術を用いたリアルタイムAIを活用した新しい教室ツールを提案する。
ReACTは、ユーザフレンドリなグラフィカルインターフェースを備えたデータ駆動ツールである。
学生のパフォーマンスデータを分析し、コンテキストベースのアラートとコースプランニングのための教育者へのレコメンデーションを提供する。
論文 参考訳(メタデータ) (2021-07-30T03:09:59Z) - Attentional Graph Convolutional Networks for Knowledge Concept
Recommendation in MOOCs in a Heterogeneous View [72.98388321383989]
大規模なオープンオンラインコース(MOOC)は、学生が知識を習得するための大規模かつオープンな学習機会を提供する。
学生の関心を惹きつけるため、MOOCsプロバイダによる推薦制度が採用され、学生にコースを推薦する。
そこで本研究では,MOOCにおける知識概念レコメンデーションのために,Attentional Heterogeneous Graph Convolutional Deep Knowledge Recommender (ACKRec) という,エンドツーエンドのグラフニューラルネットワークに基づくアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-23T18:28:08Z) - Neural Multi-Task Learning for Teacher Question Detection in Online
Classrooms [50.19997675066203]
教師の音声記録から質問を自動的に検出するエンドツーエンドのニューラルネットワークフレームワークを構築している。
マルチタスク学習手法を取り入れることで,質問の種類によって意味的関係の理解を深めることが可能となる。
論文 参考訳(メタデータ) (2020-05-16T02:17:04Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。