論文の概要: Neural-Singular-Hessian: Implicit Neural Representation of Unoriented
Point Clouds by Enforcing Singular Hessian
- arxiv url: http://arxiv.org/abs/2309.01793v2
- Date: Wed, 6 Sep 2023 06:39:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 11:24:58.427934
- Title: Neural-Singular-Hessian: Implicit Neural Representation of Unoriented
Point Clouds by Enforcing Singular Hessian
- Title(参考訳): neural-singular-hessian: impcing singular hessianによる無向点雲の暗黙的神経表現
- Authors: Zixiong Wang, Yunxiao Zhang, Rui Xu, Fan Zhang, Pengshuai Wang,
Shuangmin Chen, Shiqing Xin, Wenping Wang, Changhe Tu
- Abstract要約: 我々は点雲から表面を再構築するための新しいアプローチを提案する。
提案手法は, 表面近傍の点と表面の射影点との勾配を整列し, わずか数回の反復で粗いが忠実な形状となる。
- 参考スコア(独自算出の注目度): 44.28251558359345
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural implicit representation is a promising approach for reconstructing
surfaces from point clouds. Existing methods combine various regularization
terms, such as the Eikonal and Laplacian energy terms, to enforce the learned
neural function to possess the properties of a Signed Distance Function (SDF).
However, inferring the actual topology and geometry of the underlying surface
from poor-quality unoriented point clouds remains challenging. In accordance
with Differential Geometry, the Hessian of the SDF is singular for points
within the differential thin-shell space surrounding the surface. Our approach
enforces the Hessian of the neural implicit function to have a zero determinant
for points near the surface. This technique aligns the gradients for a
near-surface point and its on-surface projection point, producing a rough but
faithful shape within just a few iterations. By annealing the weight of the
singular-Hessian term, our approach ultimately produces a high-fidelity
reconstruction result. Extensive experimental results demonstrate that our
approach effectively suppresses ghost geometry and recovers details from
unoriented point clouds with better expressiveness than existing fitting-based
methods.
- Abstract(参考訳): ニューラル暗黙的表現は、点雲から表面を再構築するための有望なアプローチである。
既存の方法は、アイコンエネルギー項やラプラシアエネルギー項のような様々な正規化項を組み合わせて、学習された神経関数を符号付き距離関数(SDF)の性質を持つように強制する。
しかし、低品質な無向点雲から表面の実際の位相と幾何学を推定することは依然として困難である。
微分幾何学に従って、SDFのヘッセンは表面を囲む微分薄い殻空間内の点に対して特異である。
提案手法は, 表面近傍の点に対してゼロ行列式を持つようにニューラル暗黙関数のヘシアンを強制する。
この手法は、表面近傍の点とその表面の射影点の勾配を整列させ、わずか数イテレーションで粗いが忠実な形状を作り出す。
特異ヘッセン項の重みをアニールすることで、このアプローチは最終的に高忠実な再構成結果をもたらす。
その結果,本手法はゴースト形状を効果的に抑制し,既存のフィッティング法よりも表現性がよい無向点雲から詳細を復元することを示した。
関連論文リスト
- Point Cloud Resampling with Learnable Heat Diffusion [58.050130177241186]
ポイントクラウド再サンプリングのための学習可能な熱拡散フレームワークを提案する。
前の固定された拡散モデルとは異なり、適応条件は点雲の幾何学的特徴を選択的に保存する。
論文 参考訳(メタデータ) (2024-11-21T13:44:18Z) - Neural varifolds: an aggregate representation for quantifying the geometry of point clouds [2.2474167740753557]
本稿では,新しい表面形状特徴化,すなわち点雲のニューラルバリアフォールド表現を提案する。
変数表現は、多様体に基づく判別を通じて点雲の表面幾何学を定量化する。
提案したニューラルバリアフォールドは, 形状マッチング, 少数ショット形状分類, 形状再構成の3つの異なるタスクで評価される。
論文 参考訳(メタデータ) (2024-07-05T20:08:16Z) - GradientSurf: Gradient-Domain Neural Surface Reconstruction from RGB
Video [0.0]
GradientSurfはモノクロRGBビデオからのリアルタイム表面再構成のための新しいアルゴリズムである。
ポアソン表面再構成にインスパイアされた提案手法は, 表面, 体積, 配向点雲の密結合に基づく。
屋内の景観復元の課題として, 提案手法は曲面を曲面で再現し, より詳細に再現できることを示した。
論文 参考訳(メタデータ) (2023-10-09T04:54:30Z) - Developability Approximation for Neural Implicits through Rank
Minimization [0.5439020425819]
本稿では,ニューラル暗示表面から近似的に発達可能な表面を再構築する手法を提案する。
この手法の中心的な考え方は、ニューラルな暗黙の2階微分に作用する正規化項を組み込むことである。
我々は表面曲率の性質からインスピレーションを得て,圧縮センシングによるランク最小化手法を採用した。
論文 参考訳(メタデータ) (2023-08-07T20:23:39Z) - GeoUDF: Surface Reconstruction from 3D Point Clouds via Geometry-guided
Distance Representation [73.77505964222632]
スパース点雲から離散曲面を再構成する問題に対処する学習ベース手法であるGeoUDFを提案する。
具体的には、UDFのための幾何誘導学習法とその勾配推定を提案する。
予測されたUDFから三角形メッシュを抽出するために,カスタマイズされたエッジベースマーチングキューブモジュールを提案する。
論文 参考訳(メタデータ) (2022-11-30T06:02:01Z) - PVSeRF: Joint Pixel-, Voxel- and Surface-Aligned Radiance Field for
Single-Image Novel View Synthesis [52.546998369121354]
シングルビューRGB画像からニューラル放射場を再構成する学習フレームワークPVSeRFを提案する。
本稿では,明示的な幾何学的推論を取り入れ,放射場予測のための画素アラインな特徴と組み合わせることを提案する。
このような幾何学的特徴の導入は、外観と幾何学の絡み合いを改善するのに有効であることを示す。
論文 参考訳(メタデータ) (2022-02-10T07:39:47Z) - Learning Modified Indicator Functions for Surface Reconstruction [10.413340575612233]
正規化のない原点雲からの暗黙的表面再構成のための学習に基づくアプローチを提案する。
我々の手法はポテンシャルエネルギー理論においてガウス・レムマにインスパイアされ、指標関数に対して明示的な積分公式を与える。
我々は、表面積分を行うための新しいディープニューラルネットワークを設計し、修正されたインジケータ関数を、不向きでノイズの多い点群から学習する。
論文 参考訳(メタデータ) (2021-11-18T05:30:35Z) - Shape As Points: A Differentiable Poisson Solver [118.12466580918172]
本稿では,ポアソン表面再構成 (PSR) の微分可能な定式化を用いた,微分可能な点間メッシュ層を提案する。
微分可能なPSR層は、暗示指標場を介して、明示的な3D点表現を3Dメッシュに効率よく、かつ、差別的にブリッジすることができる。
ニューラル暗黙の表現と比較して、私たちのシェープ・アズ・ポイント(SAP)モデルはより解釈可能で、軽量で、1桁の推論時間を加速します。
論文 参考訳(メタデータ) (2021-06-07T09:28:38Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z) - Curvature Regularized Surface Reconstruction from Point Cloud [4.389913383268497]
曲率制約を伴って暗黙的表面を点雲データから再構成する変動関数と高速アルゴリズムを提案する。
提案手法は雑音に反し,曲率制約のないモデルと比較して,凹凸の特徴や鋭い角を回復する。
論文 参考訳(メタデータ) (2020-01-22T05:34:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。