論文の概要: Visualizing Topological Importance: A Class-Driven Approach
- arxiv url: http://arxiv.org/abs/2309.13185v1
- Date: Fri, 22 Sep 2023 21:20:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-26 21:45:20.182983
- Title: Visualizing Topological Importance: A Class-Driven Approach
- Title(参考訳): トポロジーの重要性を視覚化する: クラス駆動アプローチ
- Authors: Yu Qin and Brittany Terese Fasy and Carola Wenk and Brian Summa
- Abstract要約: この研究は、トポロジカルな分類において、どのようにして説明可能なディープラーニングアプローチを適用できるかを示す。
クラスラベルに関して、各データセットで重要なトポロジ構造を照らす最初のテクニックを提供する。
この研究は、グラフ、3次元形状、医療画像データにおける重要なトポロジ的特徴を可視化するこのアプローチの現実的な例を強調している。
- 参考スコア(独自算出の注目度): 8.131460996877944
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents the first approach to visualize the importance of
topological features that define classes of data. Topological features, with
their ability to abstract the fundamental structure of complex data, are an
integral component of visualization and analysis pipelines. Although not all
topological features present in data are of equal importance. To date, the
default definition of feature importance is often assumed and fixed. This work
shows how proven explainable deep learning approaches can be adapted for use in
topological classification. In doing so, it provides the first technique that
illuminates what topological structures are important in each dataset in
regards to their class label. In particular, the approach uses a learned metric
classifier with a density estimator of the points of a persistence diagram as
input. This metric learns how to reweigh this density such that classification
accuracy is high. By extracting this weight, an importance field on persistent
point density can be created. This provides an intuitive representation of
persistence point importance that can be used to drive new visualizations. This
work provides two examples: Visualization on each diagram directly and, in the
case of sublevel set filtrations on images, directly on the images themselves.
This work highlights real-world examples of this approach visualizing the
important topological features in graph, 3D shape, and medical image data.
- Abstract(参考訳): 本稿では,データのクラスを定義する位相的特徴の重要性を可視化する最初の手法を提案する。
複雑なデータの基本的な構造を抽象化できるトポロジカルな特徴は、可視化と分析パイプラインの不可欠なコンポーネントである。
データに含まれるすべてのトポロジ的特徴が同じ重要性を持つわけではない。
今日まで、機能の重要性のデフォルト定義は、しばしば仮定され、修正されている。
この研究は、説明可能なディープラーニングアプローチがトポロジカル分類にどのように適用できるかを示している。
そうすることで、クラスラベルに関して各データセットで重要なトポロジ構造を照らす最初のテクニックを提供する。
特に、このアプローチは、永続化図の点の密度推定器を入力として、学習されたメトリック分類器を使用する。
この計量は、分類精度が高いようにこの密度を補正する方法を学ぶ。
この重みを抽出することにより、永続点密度の重要フィールドを作成することができる。
これは永続点の重要性を直感的に表現し、新しい視覚化の推進に使用できる。
この研究は2つの例を提供する: 各図上で直接可視化することと、画像のサブレベルセットのフィルタの場合、画像そのものを直接可視化することである。
この研究は、グラフ、3次元形状、医療画像データにおける重要なトポロジ的特徴を可視化するこのアプローチの実例を強調している。
関連論文リスト
- Topograph: An efficient Graph-Based Framework for Strictly Topology Preserving Image Segmentation [78.54656076915565]
位相的正しさは多くの画像分割タスクにおいて重要な役割を果たす。
ほとんどのネットワークは、Diceのようなピクセル単位の損失関数を使って、トポロジカルな精度を無視して訓練されている。
トポロジ的に正確な画像セグメンテーションのための新しいグラフベースのフレームワークを提案する。
論文 参考訳(メタデータ) (2024-11-05T16:20:14Z) - TopER: Topological Embeddings in Graph Representation Learning [8.052380377159398]
トポロジカル進化速度 (TopER) は、トポロジカルデータ解析に基づく低次元埋め込み手法である。
TopERはグラフ部分構造の進化率を計算することによって、重要な位相的アプローチである永続化ホモロジーを単純化する。
我々のモデルは、分類、クラスタリング、可視化といったタスクにおいて、分子、生物学的、ソーシャルネットワークのデータセットにまたがる最先端の結果を達成したり、超えたりします。
論文 参考訳(メタデータ) (2024-10-02T17:31:33Z) - Bures-Wasserstein Means of Graphs [60.42414991820453]
本研究では,スムーズなグラフ信号分布の空間への埋め込みを通じて,グラフ平均を定義する新しいフレームワークを提案する。
この埋め込み空間において平均を求めることにより、構造情報を保存する平均グラフを復元することができる。
我々は,新しいグラフの意味の存在と特異性を確立し,それを計算するための反復アルゴリズムを提供する。
論文 参考訳(メタデータ) (2023-05-31T11:04:53Z) - Rethinking Persistent Homology for Visual Recognition [27.625893409863295]
本稿では,様々な訓練シナリオにおける画像分類におけるトポロジ的特性の有効性を詳細に分析する。
例えば、小さなデータセット上で単純なネットワークをトレーニングするなど、トポロジ的特徴から最も恩恵を受けるシナリオを特定します。
論文 参考訳(メタデータ) (2022-07-09T08:01:11Z) - Learning to Learn Graph Topologies [27.782971146122218]
ノードデータからグラフ構造へのマッピングを学習する(L2O)。
このモデルは、ノードデータとグラフサンプルのペアを使ってエンドツーエンドでトレーニングされる。
合成データと実世界のデータの両方の実験により、我々のモデルは、特定のトポロジ特性を持つグラフを学習する際の古典的反復アルゴリズムよりも効率的であることが示された。
論文 参考訳(メタデータ) (2021-10-19T08:42:38Z) - Self-supervised Graph-level Representation Learning with Local and
Global Structure [71.45196938842608]
自己教師付き全グラフ表現学習のためのローカル・インスタンスとグローバル・セマンティック・ラーニング(GraphLoG)という統合フレームワークを提案する。
GraphLoGは、局所的な類似点の保存に加えて、グローバルなセマンティッククラスタをキャプチャする階層的なプロトタイプも導入している。
モデル学習のための効率的なオンライン予測最大化(EM)アルゴリズムがさらに開発された。
論文 参考訳(メタデータ) (2021-06-08T05:25:38Z) - Saliency-driven Class Impressions for Feature Visualization of Deep
Neural Networks [55.11806035788036]
分類に欠かせないと思われる特徴を視覚化することは有利である。
既存の可視化手法は,背景特徴と前景特徴の両方からなる高信頼画像を生成する。
本研究では,あるタスクにおいて最も重要であると考えられる識別的特徴を可視化するための,サリエンシ駆動型アプローチを提案する。
論文 参考訳(メタデータ) (2020-07-31T06:11:06Z) - Structured Landmark Detection via Topology-Adapting Deep Graph Learning [75.20602712947016]
解剖学的顔と医学的ランドマーク検出のための新しいトポロジ適応深層グラフ学習手法を提案する。
提案手法は局所像特徴と大域形状特徴の両方を利用するグラフ信号を構成する。
3つの公開顔画像データセット(WFLW、300W、COFW-68)と3つの現実世界のX線医学データセット(ケパロメトリ、ハンド、ペルビス)で実験を行った。
論文 参考訳(メタデータ) (2020-04-17T11:55:03Z) - Weakly-Supervised Salient Object Detection via Scribble Annotations [54.40518383782725]
本稿では,スクリブルラベルからサリエンシを学習するための弱教師付きサリエント物体検出モデルを提案する。
そこで本研究では,予測されたサリエンシマップの構造アライメントを測定するために,新しい尺度であるサリエンシ構造尺度を提案する。
我々の手法は、既存の弱教師付き/非教師付き手法よりも優れているだけでなく、いくつかの完全教師付き最先端モデルと同等である。
論文 参考訳(メタデータ) (2020-03-17T12:59:50Z) - ShapeVis: High-dimensional Data Visualization at Scale [10.007129417823858]
トポロジカルデータ解析にインスパイアされたポイントクラウドデータのためのスケーラブルな可視化技術であるShapeVisを紹介する。
本手法は,圧縮された図形表現において,データの基底となる幾何学的および位相的構造をキャプチャする。
論文 参考訳(メタデータ) (2020-01-15T07:59:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。