論文の概要: Towards surgery with good quantum LDPC codes
- arxiv url: http://arxiv.org/abs/2309.16406v2
- Date: Mon, 8 Jan 2024 12:01:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-09 23:01:47.066386
- Title: Towards surgery with good quantum LDPC codes
- Title(参考訳): 優れた量子LDPC符号を用いた手術に向けて
- Authors: Alexander Cowtan
- Abstract要約: また,Panteleev-chev citePKの量子LDPC符号により,任意の論理量子ビットを用いた手術が可能であり,レートと距離のスケーリングを低下させるペナルティが生じることを示した。
- 参考スコア(独自算出の注目度): 65.268245109828
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We show that the good quantum LDPC codes of Panteleev-Kalachev \cite{PK}
allow for surgery using any logical qubits, albeit incurring an asymptotic
penalty which lowers the rate and distance scaling. We also prove that we can
satisfy 3 of the 4 conditions for performing surgery \textit{without} incurring
an asymptotic penalty. If the last condition is also satisfied then we can
perform code surgery while maintaining $k, d\in \Theta(n)$.
- Abstract(参考訳): 本稿では,Panteleev-Kalachev \cite{PK} の量子LDPC符号を用いて,任意の論理量子ビットを用いた手術を行うことができることを示す。
また, 漸近的ペナルティを伴って手術を行うための4つの条件のうち3つを満たせることを証明した。
最後の条件も満足すれば、$k, d\in \theta(n)$を維持しながらコード手術を行うことができます。
関連論文リスト
- SSIP: automated surgery with quantum LDPC codes [55.2480439325792]
クビットCSSコード間の手術を自動化するための,オープンソースの軽量PythonパッケージであるSSIP(Identifying Pushouts)による安全手術について述べる。
ボンネットの下では、鎖複体の圏における普遍構成によって支配される$mathbbF$上の線型代数を実行する。
高い符号距離を犠牲にすることなく,手術によって様々な論理的測定を安価に行うことができることを示す。
論文 参考訳(メタデータ) (2024-07-12T16:50:01Z) - Qubit Number Optimization for Restriction Terms of QUBO Hamiltonians [62.997667081978825]
数学的には$R$の分数値を求めることができる。
制限ハミルトニアンの実装に必要な量子ビット数をさらに減らす方法を示す。
最後に、FRCの実装に直面した場合、DWaveのAdvantage$_$system4.1 Quantum Annealer(QA)の応答を特徴付ける。
論文 参考訳(メタデータ) (2023-06-12T08:25:56Z) - Gaussian conversion protocol for heralded generation of qunaught states [66.81715281131143]
ボソニック符号は、qubit型量子情報をより大きなボソニックヒルベルト空間にマッピングする。
我々は、これらの符号 GKP qunaught 状態の2つのインスタンスと、ゼロ論理エンコードされた量子ビットに対応する4つの対称二項状態とを変換する。
GKPqunaught状態は98%以上、確率は約3.14%である。
論文 参考訳(メタデータ) (2023-01-24T14:17:07Z) - Biased Gottesman-Kitaev-Preskill repetition code [0.0]
Gottesmann-Kitaev-Preskill (GKP)エンコーディングに基づく連続可変量子コンピューティングアーキテクチャが有望な候補として浮上している。
矩形格子GKPの符号容量挙動を,等方的ガウス変位チャネルの下で繰り返し符号化する。
論文 参考訳(メタデータ) (2022-12-21T22:56:05Z) - A lower bound on the space overhead of fault-tolerant quantum computation [51.723084600243716]
しきい値定理は、フォールトトレラント量子計算の理論における基本的な結果である。
振幅雑音を伴う耐故障性量子計算の最大長に対する指数的上限を証明した。
論文 参考訳(メタデータ) (2022-01-31T22:19:49Z) - Balanced Product Quantum Codes [5.33024001730262]
この研究は、$[[N, K, D]]$ LDPC量子符号の最初の明示的で非ランダムな族を提供する。
この族は古典的な符号とラマヌジャングラフを平衡積と呼ばれる演算によって結合することによって構成される。
論文 参考訳(メタデータ) (2020-12-16T21:19:38Z) - Quantum coding with low-depth random circuits [2.4201087215689947]
我々は、局所接続を持つ低深さランダム回路のアンサンブルを用いて、量子誤り訂正符号を生成する。
ランダム安定化器符号や消去チャネルの場合、深さ$O(log N)$ランダム回路が必要であるという強い証拠が得られます。
これらの結果は、有限レート量子符号が近距離デバイスに実質的に関係していることを示している。
論文 参考訳(メタデータ) (2020-10-19T18:25:30Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
本稿では、生成した状態の古典的ベクトル形式を生成する効率的な読み出しプロトコルを提案する。
我々のプロトコルは、出力状態が入力行列の行空間にある場合に適合する。
我々の技術ツールの1つは、Gram-Schmidt正則手順を実行するための効率的な量子アルゴリズムである。
論文 参考訳(メタデータ) (2020-04-14T11:05:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。