論文の概要: Spectrally Adapted Physics-Informed Neural Networks for Solving
Unbounded Domain Problems
- arxiv url: http://arxiv.org/abs/2202.02710v1
- Date: Sun, 6 Feb 2022 05:25:22 GMT
- ステータス: 処理完了
- システム内更新日: 2022-02-08 18:46:55.047681
- Title: Spectrally Adapted Physics-Informed Neural Networks for Solving
Unbounded Domain Problems
- Title(参考訳): 非有界領域問題を解くためのスペクトル適応物理形ニューラルネットワーク
- Authors: Mingtao Xia, Lucas B\"ottcher, Tom Chou
- Abstract要約: 本研究では, (i) 物理インフォームドニューラルネットワーク (PINN) と (ii) 適応スペクトル法という2種類の数値手法を組み合わせる。
物理インフォームドニューラルネットワークによる高次数値スキームの実装により,PDEの解法を効率的に行うことができる。
次に,最近導入されたスペクトル手法の適応手法をPINNベースのPDEソルバに組み込んで,標準PINNで効率よく近似できない非有界領域問題の数値解を求める方法を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Solving analytically intractable partial differential equations (PDEs) that
involve at least one variable defined in an unbounded domain requires efficient
numerical methods that accurately resolve the dependence of the PDE on that
variable over several orders of magnitude. Unbounded domain problems arise in
various application areas and solving such problems is important for
understanding multi-scale biological dynamics, resolving physical processes at
long time scales and distances, and performing parameter inference in
engineering problems. In this work, we combine two classes of numerical
methods: (i) physics-informed neural networks (PINNs) and (ii) adaptive
spectral methods. The numerical methods that we develop take advantage of the
ability of physics-informed neural networks to easily implement high-order
numerical schemes to efficiently solve PDEs. We then show how recently
introduced adaptive techniques for spectral methods can be integrated into
PINN-based PDE solvers to obtain numerical solutions of unbounded domain
problems that cannot be efficiently approximated by standard PINNs. Through a
number of examples, we demonstrate the advantages of the proposed spectrally
adapted PINNs (s-PINNs) over standard PINNs in approximating functions, solving
PDEs, and estimating model parameters from noisy observations in unbounded
domains.
- Abstract(参考訳): 非有界領域で定義される少なくとも1つの変数を含む解析的に難解な偏微分方程式 (pdes) を解くには、その変数に対するpdeの依存性を数桁以上の等級で正確に解く効率的な数値解法が必要である。
非有界領域問題(unbounded domain problem)は、様々な応用領域で発生し、その解決は、多スケール生物力学の理解、長期スケールと距離での物理過程の解解法、工学的問題におけるパラメータ推論の実行において重要である。
本研究では, 数値的手法の2つのクラスを組み合わせる。
(i)物理情報化ニューラルネットワーク(pinn)及び
(ii)適応スペクトル法。
物理インフォームドニューラルネットワークによる高次数値スキームの実装により,PDEの解法を効率的に行うことができる。
次に,最近導入されたスペクトル手法の適応手法をPINNベースのPDEソルバに組み込んで,標準PINNで効率よく近似できない非有界領域問題の数値解を求める方法を示す。
いくつかの例を通して、近似関数の標準的なPINNに対するスペクトル適応型PINN(s-PINN)の利点、PDEの解法、および非有界領域における雑音観測からモデルパラメータを推定することの利点を示す。
関連論文リスト
- RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
物理インフォームドニューラルネットワーク(PINN)は偏微分方程式(PDE)の解法として広く応用されている。
本稿では,地域最適化としての新たな訓練パラダイムを提案し,理論的に検討する。
実践的なトレーニングアルゴリズムであるRerea Optimized PINN(RoPINN)は、この新しいパラダイムからシームレスに派生している。
論文 参考訳(メタデータ) (2024-05-23T09:45:57Z) - Meta-learning of Physics-informed Neural Networks for Efficiently
Solving Newly Given PDEs [33.072056425485115]
本稿では、偏微分方程式(PDE)問題を効率的に解くニューラルネットワークに基づくメタラーニング手法を提案する。
提案手法は多種多様なPDE問題の解法をメタラーニングし,その知識を新たに与えられたPDE問題の解法に用いる。
提案手法は,PDE問題の解を予測する上で,既存の手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-10-20T04:35:59Z) - Hypernetwork-based Meta-Learning for Low-Rank Physics-Informed Neural
Networks [24.14254861023394]
本研究では,物理インフォームドニューラルネットワーク (PINN) がそのような解法の一つとして考えられる可能性を秘めた経路を提案する。
PINNは、ディープラーニングと科学計算の適切な統合を開拓してきたが、ニューラルネットワークの反復的な時間的トレーニングを必要としている。
本稿では,数百のモデルパラメータと関連するハイパーネットワークに基づくメタ学習アルゴリズムを含む軽量な低ランクPINNを提案する。
論文 参考訳(メタデータ) (2023-10-14T08:13:43Z) - Finite Element Operator Network for Solving Parametric PDEs [10.855582917943092]
偏微分方程式(PDE)は自然現象の理解と予測の基盤となる。
有限要素演算子ネットワーク(FEONet)を用いたパラメトリックPDEの解法を提案する。
論文 参考訳(メタデータ) (2023-08-09T03:56:07Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - Semi-analytic PINN methods for singularly perturbed boundary value
problems [0.8594140167290099]
本稿では,新しい半解析的物理情報ニューラルネットワーク(PINN)を提案し,特異な摂動境界値問題の解法を提案する。
PINNは、偏微分方程式の数値解を見つけるための有望な視点を提供する科学機械学習フレームワークである。
論文 参考訳(メタデータ) (2022-08-19T04:26:40Z) - Physics-Aware Neural Networks for Boundary Layer Linear Problems [0.0]
物理インフォームドニューラルネットワーク(PINN)は、一般偏微分方程式(PDE)の解をニューラルネットワークの損失/コストの観点から何らかの形で加算することによって近似する。
本稿では,1つ以上の境界層が存在する線形PDEに対するPINNについて検討する。
論文 参考訳(メタデータ) (2022-07-15T21:15:06Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Revisiting PINNs: Generative Adversarial Physics-informed Neural
Networks and Point-weighting Method [70.19159220248805]
物理インフォームドニューラルネットワーク(PINN)は、偏微分方程式(PDE)を数値的に解くためのディープラーニングフレームワークを提供する
本稿では,GA機構とPINNの構造を統合したGA-PINNを提案する。
本稿では,Adaboost法の重み付け戦略からヒントを得て,PINNのトレーニング効率を向上させるためのPW法を提案する。
論文 参考訳(メタデータ) (2022-05-18T06:50:44Z) - Lie Point Symmetry Data Augmentation for Neural PDE Solvers [69.72427135610106]
本稿では,ニューラルPDEソルバサンプルの複雑性を改善することにより,この問題を部分的に緩和する手法を提案する。
PDEの文脈では、データ変換の完全なリストを定量的に導き出せることが分かりました。
神経性PDEソルバサンプルの複雑さを桁違いに改善するために、どのように容易に展開できるかを示す。
論文 参考訳(メタデータ) (2022-02-15T18:43:17Z) - dNNsolve: an efficient NN-based PDE solver [62.997667081978825]
ODE/PDEを解決するためにデュアルニューラルネットワークを利用するdNNsolveを紹介します。
我々は,dNNsolveが1,2,3次元の幅広いODE/PDEを解くことができることを示す。
論文 参考訳(メタデータ) (2021-03-15T19:14:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。