論文の概要: From Oja's Algorithm to the Multiplicative Weights Update Method with
Applications
- arxiv url: http://arxiv.org/abs/2310.15559v1
- Date: Tue, 24 Oct 2023 07:02:47 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 20:09:04.852865
- Title: From Oja's Algorithm to the Multiplicative Weights Update Method with
Applications
- Title(参考訳): Ojaのアルゴリズムから応用による乗法重み更新法へ
- Authors: Dan Garber
- Abstract要約: Ojaのアルゴリズムは、主に主成分分析の文脈で研究されているよく知られたオンラインアルゴリズムである。
一般的な固有ベクトルを共有する対称行列の任意の(必ずしも)列に適用すると、Ojaのアルゴリズムの後悔は直接有界となる。
- 参考スコア(独自算出の注目度): 18.035791732015802
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Oja's algorithm is a well known online algorithm studied mainly in the
context of stochastic principal component analysis. We make a simple
observation, yet to the best of our knowledge a novel one, that when applied to
a any (not necessarily stochastic) sequence of symmetric matrices which share
common eigenvectors, the regret of Oja's algorithm could be directly bounded in
terms of the regret of the well known multiplicative weights update method for
the problem of prediction with expert advice. Several applications to
optimization with quadratic forms over the unit sphere in $\reals^n$ are
discussed.
- Abstract(参考訳): ojaのアルゴリズムは、主に確率主成分分析の文脈で研究されているよく知られたオンラインアルゴリズムである。
我々は、共通の固有ベクトルを共有する任意の(必ずしも確率的ではない)対称行列列に適用すると、ojaのアルゴリズムの後悔は、専門家のアドバイスによる予測問題に対するよく知られた乗法重みの後悔という観点で、直接的に境界づけられるという、我々の知識の最も良いところは、単純な観察をする。
単位球面上の二次形式を最適化するいくつかの応用を$\reals^n$で論じる。
関連論文リスト
- Bregman-divergence-based Arimoto-Blahut algorithm [53.64687146666141]
本稿では,Arimoto-BlahutアルゴリズムをBregman-Diversergenceシステム上で定義された一般関数に一般化する。
本稿では,古典的および量子速度歪み理論に適用可能な凸最適化自由アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-08-10T06:16:24Z) - A general error analysis for randomized low-rank approximation with application to data assimilation [42.57210316104905]
中心行列および非標準行列に対するフロベニウスノルムにおける低ランク近似誤差の解析のための枠組みを提案する。
最小限の仮定の下では、期待と確率の正確な境界を導出する。
私たちの境界には、プロパティを導出し、実践的な選択を動機付けるための明確な解釈があります。
論文 参考訳(メタデータ) (2024-05-08T04:51:56Z) - A fixed-point algorithm for matrix projections with applications in
quantum information [7.988085110283119]
このアルゴリズムは反復数において最適解に指数関数的に収束することを示す。
量子資源理論および量子シャノン理論における我々のアルゴリズムのいくつかの応用について論じる。
論文 参考訳(メタデータ) (2023-12-22T11:16:11Z) - Orthogonally weighted $\ell_{2,1}$ regularization for rank-aware joint
sparse recovery: algorithm and analysis [7.7001263654719985]
我々は,新たな正規化法である $ell_2,1$$(mathitowell_2,1$) を用いて,結合スパース回復問題の効率的な解法を提案し,解析する。
この手法は特徴抽出、行列列選択、辞書学習に応用され、一般的な$ell_2,1$正規化とは異なる。
提案手法のランク認識の証明を行い,提案手法の最適化問題に対する解が存在することを証明し,収束を解析した効率的な解法を開発した。
論文 参考訳(メタデータ) (2023-11-21T01:52:15Z) - Bayesian Design Principles for Frequentist Sequential Learning [11.421942894219901]
逐次学習問題に対する頻繁な後悔を最適化する理論を開発する。
各ラウンドで「アルゴリズム的信念」を生成するための新しい最適化手法を提案する。
本稿では,マルチアームバンディットの「ベスト・オブ・オール・ワールド」な経験的性能を実現するための新しいアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-01T22:17:37Z) - Regret Bounds for Expected Improvement Algorithms in Gaussian Process
Bandit Optimization [63.8557841188626]
期待されている改善(EI)アルゴリズムは、不確実性の下で最適化するための最も一般的な戦略の1つである。
本稿では,GP予測平均を通した標準既存値を持つEIの変種を提案する。
我々のアルゴリズムは収束し、$mathcal O(gamma_TsqrtT)$の累積後悔境界を達成することを示す。
論文 参考訳(メタデータ) (2022-03-15T13:17:53Z) - Estimating leverage scores via rank revealing methods and randomization [50.591267188664666]
任意のランクの正方形密度あるいはスパース行列の統計レバレッジスコアを推定するアルゴリズムについて検討した。
提案手法は,高密度およびスパースなランダム化次元性還元変換の合成と階調明細化法を組み合わせることに基づく。
論文 参考訳(メタデータ) (2021-05-23T19:21:55Z) - Accelerated Message Passing for Entropy-Regularized MAP Inference [89.15658822319928]
離散値のランダムフィールドにおけるMAP推論の最大化は、機械学習の基本的な問題である。
この問題の難しさから、特殊メッセージパッシングアルゴリズムの導出には線形プログラミング(LP)緩和が一般的である。
古典的加速勾配の根底にある手法を活用することにより,これらのアルゴリズムを高速化するランダム化手法を提案する。
論文 参考訳(メタデータ) (2020-07-01T18:43:32Z) - SONIA: A Symmetric Blockwise Truncated Optimization Algorithm [2.9923891863939938]
本研究は, 経験的リスクに対する新しいアルゴリズムを提案する。
このアルゴリズムは、一部分空間における二階探索型更新を計算し、1階探索法と2階探索法の間のギャップを埋める。
論文 参考訳(メタデータ) (2020-06-06T19:28:14Z) - Optimal Randomized First-Order Methods for Least-Squares Problems [56.05635751529922]
このアルゴリズムのクラスは、最小二乗問題に対する最も高速な解法のうち、いくつかのランダム化手法を含んでいる。
我々は2つの古典的埋め込み、すなわちガウス射影とアダマール変換のサブサンプリングに焦点を当てる。
得られたアルゴリズムは条件数に依存しない最小二乗問題の解法として最も複雑である。
論文 参考訳(メタデータ) (2020-02-21T17:45:32Z) - Optimal Iterative Sketching with the Subsampled Randomized Hadamard
Transform [64.90148466525754]
最小二乗問題に対する反復スケッチの性能について検討する。
本研究では、Haar行列とランダム化されたHadamard行列の収束速度が同一であることを示し、ランダムなプロジェクションを経時的に改善することを示した。
これらの手法は、ランダム化次元還元を用いた他のアルゴリズムにも適用することができる。
論文 参考訳(メタデータ) (2020-02-03T16:17:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。