論文の概要: Learning Collective Behaviors from Observation
- arxiv url: http://arxiv.org/abs/2311.00875v1
- Date: Wed, 1 Nov 2023 22:02:08 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-03 15:44:43.213713
- Title: Learning Collective Behaviors from Observation
- Title(参考訳): 観察から集団行動を学ぶ
- Authors: Jinchao Feng and Ming Zhong
- Abstract要約: 本稿では,力学系の構造を同定するための一連の学習手法を提案する。
相互作用エージェントの複雑なシステムにおける創発的行動を理解することを目的としている。
- 参考スコア(独自算出の注目度): 15.687086711043532
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a review of a series of learning methods used to identify the
structure of dynamical systems, aiming to understand emergent behaviors in
complex systems of interacting agents. These methods not only offer theoretical
guarantees of convergence but also demonstrate computational efficiency in
handling high-dimensional observational data. They can manage observation data
from both first- and second-order dynamical systems, accounting for
observation/stochastic noise, complex interaction rules, missing interaction
features, and real-world observations of interacting agent systems. The essence
of developing such a series of learning methods lies in designing appropriate
loss functions using the variational inverse problem approach, which inherently
provides dimension reduction capabilities to our learning methods.
- Abstract(参考訳): 本稿では,対話エージェントの複雑なシステムにおける創発的行動を理解することを目的とした,動的システムの構造を特定するための一連の学習手法についてレビューする。
これらの手法は収束の理論的保証を提供するだけでなく、高次元観測データを扱う計算効率を示す。
一階および二階の力学系からの観測データを管理することができ、観測・確率的ノイズ、複雑な相互作用規則、相互作用の特徴の欠如、相互作用するエージェントシステムの実世界の観測を説明できる。
このような一連の学習手法の開発の本質は、学習方法に本質的に次元削減機能を提供する変分逆問題アプローチを用いて、適切な損失関数を設計することにある。
関連論文リスト
- Reinforcement Learning under Latent Dynamics: Toward Statistical and Algorithmic Modularity [51.40558987254471]
強化学習の現実的な応用は、エージェントが複雑な高次元の観察を行う環境を含むことが多い。
本稿では,統計的・アルゴリズム的な観点から,textit General$ latent dynamicsの下での強化学習の課題に対処する。
論文 参考訳(メタデータ) (2024-10-23T14:22:49Z) - A Competitive Learning Approach for Specialized Models: A Solution for
Complex Physical Systems with Distinct Functional Regimes [0.0]
本稿では,物理システムのデータ駆動モデルを得るための新たな競合学習手法を提案する。
提案手法の背景にある基本的な考え方は、データに基づいて同時にトレーニングされたモデルの集合に対して、動的損失関数を使用することである。
論文 参考訳(メタデータ) (2023-07-19T23:29:40Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
異常検出は様々なアプリケーションにおいて基本的な役割を果たす。
既存のメソッドでは、インスタンスがデータとして容易に観察できないシステムであるシナリオを扱うのが難しい。
システム埋め込みを学習するエンコーダデコーダモジュールを含むエンドツーエンドアプローチを開発する。
論文 参考訳(メタデータ) (2023-04-21T02:20:24Z) - Learning Interaction Variables and Kernels from Observations of
Agent-Based Systems [14.240266845551488]
本稿では,エージェントの軌道に沿った状態や速度の観測を前提として,相互作用カーネルが依存する変数と相互作用カーネル自体を両立させる学習手法を提案する。
これにより、高次元観測データから次元性の呪いを避ける効果的な次元削減が得られる。
我々は,本手法の学習能力を,様々な一階対話システムに示す。
論文 参考訳(メタデータ) (2022-08-04T16:31:01Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
本研究では,線形関数近似を用いた基本的な$Q$-learningプロトコルの探索変種を提案する。
このアルゴリズムの性能は,新しい近似誤差というより寛容な概念の下で,非常に優雅に低下することを示す。
論文 参考訳(メタデータ) (2022-06-01T23:26:51Z) - Summarising and Comparing Agent Dynamics with Contrastive Spatiotemporal
Abstraction [12.858982225307809]
本研究では,データ駆動型モデル非依存手法を導入し,進化する力学系内での高次コントラスト点の人間解釈可能な要約を生成する。
連続状態空間に対して実用的なアルゴリズムを概説し、深層強化学習エージェントの学習履歴を要約するために展開する。
論文 参考訳(メタデータ) (2022-01-17T11:34:59Z) - Structure-Preserving Learning Using Gaussian Processes and Variational
Integrators [62.31425348954686]
本稿では,機械系の古典力学に対する変分積分器と,ガウス過程の回帰による残留力学の学習の組み合わせを提案する。
我々は、既知のキネマティック制約を持つシステムへのアプローチを拡張し、予測の不確実性に関する公式な境界を提供する。
論文 参考訳(メタデータ) (2021-12-10T11:09:29Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
現代の力学系はますます非線形で複雑なものになりつつある。
予測と制御のためのコンパクトで包括的な表現でこれらのシステムをモデル化するフレームワークが必要である。
本手法は,教師付き学習手法を用いてこれらの基礎関数を学習する。
論文 参考訳(メタデータ) (2021-09-06T04:39:06Z) - On Contrastive Representations of Stochastic Processes [53.21653429290478]
プロセスの表現を学習することは、機械学習の新たな問題である。
本手法は,周期関数,3次元オブジェクト,動的プロセスの表現の学習に有効であることを示す。
論文 参考訳(メタデータ) (2021-06-18T11:00:24Z) - Data-driven discovery of interacting particle systems using Gaussian
processes [3.0938904602244346]
本研究では,2次相互作用粒子系における距離に基づく相互作用則の発見について検討する。
本稿では,潜在相互作用カーネル関数をガウス過程としてモデル化する学習手法を提案する。
異なる集団行動を示すシステムにおける数値的な結果から,ノイズの少ない軌道データから,我々のアプローチを効果的に学習することを示す。
論文 参考訳(メタデータ) (2021-06-04T22:00:53Z) - Learning Theory for Inferring Interaction Kernels in Second-Order
Interacting Agent Systems [17.623937769189364]
推定器の強い一貫性と最適非パラメトリック min-max 収束率を確立する完全学習理論を開発する。
推定器を構築するための数値アルゴリズムは並列化可能であり、高次元問題に対してよく機能し、複雑な力学系上で実証される。
論文 参考訳(メタデータ) (2020-10-08T02:07:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。