論文の概要: Transformed Physics-Informed Neural Networks for The Convection-Diffusion Equation
- arxiv url: http://arxiv.org/abs/2409.07671v1
- Date: Thu, 12 Sep 2024 00:24:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 18:11:59.966592
- Title: Transformed Physics-Informed Neural Networks for The Convection-Diffusion Equation
- Title(参考訳): 対流拡散方程式のための変換された物理インフォームニューラルネットワーク
- Authors: Jiajing Guan, Howard Elman,
- Abstract要約: 特異な摂動問題には、数値的に解くのが難しい急な境界層を持つ解が存在する。
有限差分法のような従来の数値法は、安定かつ正確な解を得るために洗練されたメッシュを必要とする。
我々は,物理インフォームドニューラルネットワーク(PINN)を用いて特異摂動問題の数値解を生成することを検討する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Singularly perturbed problems are known to have solutions with steep boundary layers that are hard to resolve numerically. Traditional numerical methods, such as Finite Difference Methods (FDMs), require a refined mesh to obtain stable and accurate solutions. As Physics-Informed Neural Networks (PINNs) have been shown to successfully approximate solutions to differential equations from various fields, it is natural to examine their performance on singularly perturbed problems. The convection-diffusion equation is a representative example of such a class of problems, and we consider the use of PINNs to produce numerical solutions of this equation. We study two ways to use PINNS: as a method for correcting oscillatory discrete solutions obtained using FDMs, and as a method for modifying reduced solutions of unperturbed problems. For both methods, we also examine the use of input transformation to enhance accuracy, and we explain the behavior of input transformations analytically, with the help of neural tangent kernels.
- Abstract(参考訳): 特異な摂動問題は、数値的に解くのが難しい急な境界層を持つ解を持つことが知られている。
有限差分法(FDM)のような従来の数値法は、安定かつ正確な解を得るために洗練されたメッシュを必要とする。
物理インフォームドニューラルネットワーク(PINN)は、様々な分野の微分方程式の解をうまく近似できることが示されているので、特異摂動問題においてそれらの性能を調べることは当然である。
対流拡散方程式はそのような問題の代表的な例であり、この方程式の数値解を生成するために PINN を用いることを検討する。
本研究では、FDMを用いて得られる振動性離散解の補正方法としてPINNSを利用する方法と、未飽和問題の縮小解を修正する方法としてPINNSを利用する方法について検討する。
両手法とも、精度を高めるために入力変換を用いることも検討し、ニューラルネットワークカーネルの助けを借りて、入力変換の挙動を解析的に説明する。
関連論文リスト
- Discovery of Quasi-Integrable Equations from traveling-wave data using the Physics-Informed Neural Networks [0.0]
PINNは2+1次元非線形偏微分方程式の渦解の研究に用いられる。
保存法則(cPINN)、初期プロファイルの変形、および識別の解像度を改善するための摩擦アプローチを考察する。
論文 参考訳(メタデータ) (2024-10-23T08:29:13Z) - Augmented neural forms with parametric boundary-matching operators for solving ordinary differential equations [0.0]
本稿では,最適化可能な境界マッチングを持つ適切なニューラルフォームを体系的に構築するフォーマリズムを提案する。
ニューマン条件やロビン条件の問題をパラメトリックディリクレ条件の等価問題に変換する新しい手法を記述する。
提案手法は,一階および二階の常微分方程式と一階のシステムを含む多種多様な問題に対して実験を行った。
論文 参考訳(メタデータ) (2024-04-30T11:10:34Z) - Enhanced physics-informed neural networks with domain scaling and
residual correction methods for multi-frequency elliptic problems [11.707981310045742]
楕円型偏微分方程式の多周波解に対するニューラルネットワーク近似法を開発した。
提案手法の有効性と精度を多周波モデル問題に適用する。
論文 参考訳(メタデータ) (2023-11-07T06:08:47Z) - A Stable and Scalable Method for Solving Initial Value PDEs with Neural
Networks [52.5899851000193]
我々は,ネットワークの条件が悪くなるのを防止し,パラメータ数で時間線形に動作するODEベースのIPPソルバを開発した。
このアプローチに基づく現在の手法は2つの重要な問題に悩まされていることを示す。
まず、ODEに従うと、問題の条件付けにおいて制御不能な成長が生じ、最終的に許容できないほど大きな数値誤差が生じる。
論文 参考訳(メタデータ) (2023-04-28T17:28:18Z) - HomPINNs: homotopy physics-informed neural networks for solving the
inverse problems of nonlinear differential equations with multiple solutions [6.89453634946458]
非線形微分方程式(DE)の逆問題を解決するためにホモトピー物理情報ニューラルネットワーク(HomPINN)を提案する。
提案するフレームワークは、DEC制約を順守しながら、さまざまなソリューションにわたるラベルなしの観測を同時に近似するためにNNを使うことから始まる。
提案手法はスケーラブルで適応可能であり,複数の解と未知パラメータを用いたDESの解法として有効であることを示す。
論文 参考訳(メタデータ) (2023-04-06T01:20:23Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Semi-analytic PINN methods for singularly perturbed boundary value
problems [0.8594140167290099]
本稿では,新しい半解析的物理情報ニューラルネットワーク(PINN)を提案し,特異な摂動境界値問題の解法を提案する。
PINNは、偏微分方程式の数値解を見つけるための有望な視点を提供する科学機械学習フレームワークである。
論文 参考訳(メタデータ) (2022-08-19T04:26:40Z) - Physics-Informed Neural Network Method for Parabolic Differential
Equations with Sharply Perturbed Initial Conditions [68.8204255655161]
急激な摂動初期条件を持つパラボラ問題に対する物理インフォームドニューラルネットワーク(PINN)モデルを開発した。
ADE解の局所的な大きな勾配は(PINNでよく見られる)ラテンハイパーキューブで方程式の残余の高効率なサンプリングを行う。
本稿では,他の方法により選択した量よりも精度の高いPINNソリューションを生成する損失関数における重みの基準を提案する。
論文 参考訳(メタデータ) (2022-08-18T05:00:24Z) - Message Passing Neural PDE Solvers [60.77761603258397]
我々は、バックプロップ最適化されたニューラル関数近似器で、グラフのアリーデザインのコンポーネントを置き換えるニューラルメッセージパッシング解決器を構築した。
本稿では, 有限差分, 有限体積, WENOスキームなどの古典的手法を表現的に含んでいることを示す。
本研究では, 異なる領域のトポロジ, 方程式パラメータ, 離散化などにおける高速, 安定, 高精度な性能を, 1次元, 2次元で検証する。
論文 参考訳(メタデータ) (2022-02-07T17:47:46Z) - Conditional physics informed neural networks [85.48030573849712]
固有値問題のクラス解を推定するための条件付きPINN(物理情報ニューラルネットワーク)を紹介します。
一つのディープニューラルネットワークが、問題全体に対する偏微分方程式の解を学習できることが示される。
論文 参考訳(メタデータ) (2021-04-06T18:29:14Z) - Multipole Graph Neural Operator for Parametric Partial Differential
Equations [57.90284928158383]
物理系をシミュレーションするためのディープラーニングベースの手法を使用する際の大きな課題の1つは、物理ベースのデータの定式化である。
線形複雑度のみを用いて、あらゆる範囲の相互作用をキャプチャする、新しいマルチレベルグラフニューラルネットワークフレームワークを提案する。
実験により, 離散化不変解演算子をPDEに学習し, 線形時間で評価できることを確認した。
論文 参考訳(メタデータ) (2020-06-16T21:56:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。