論文の概要: AI Use in Manuscript Preparation for Academic Journals
- arxiv url: http://arxiv.org/abs/2311.14720v1
- Date: Sun, 19 Nov 2023 06:04:46 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-03 13:40:14.292270
- Title: AI Use in Manuscript Preparation for Academic Journals
- Title(参考訳): 学術雑誌のマニュアル作成におけるAI活用
- Authors: Nir Chemaya and Daniel Martin
- Abstract要約: 大規模言語モデル(LLM)は、AIが学術的な文章にどのように影響するかを興奮と心配の両方を生み出している。
学術出版物の著者は、原稿の改訂に使用するAIツールを自発的に開示するかもしれない。
ジャーナルやカンファレンスは、開示を義務付けるか、あるいは検出サービスを使用するようにします。
- 参考スコア(独自算出の注目度): 1.881901067333374
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The emergent abilities of Large Language Models (LLMs), which power tools
like ChatGPT and Bard, have produced both excitement and worry about how AI
will impact academic writing. In response to rising concerns about AI use,
authors of academic publications may decide to voluntarily disclose any AI
tools they use to revise their manuscripts, and journals and conferences could
begin mandating disclosure and/or turn to using detection services, as many
teachers have done with student writing in class settings. Given these looming
possibilities, we investigate whether academics view it as necessary to report
AI use in manuscript preparation and how detectors react to the use of AI in
academic writing.
- Abstract(参考訳): ChatGPTやBardといったツールを駆使したLarge Language Models(LLMs)の創発的な能力は、AIが学術的な文章にどう影響するかという興奮と心配の両方を生み出した。
ai利用に関する懸念が高まる中、学術出版物の著者は自発的に原稿の改訂に使用するaiツールを開示し、ジャーナルやカンファレンスは開示の義務付けや検出サービスの利用を開始する可能性がある。
こうした略奪的可能性を踏まえ、学術者は、原稿作成におけるAIの使用を報告する必要があるとみなし、検出器が学術著作におけるAIの使用にどう反応するかを調査する。
関連論文リスト
- A Multi-Year Grey Literature Review on AI-assisted Test Automation [46.97326049485643]
テスト自動化(TA)技術は、ソフトウェア工学の品質保証に不可欠である。
TAテクニックは、高いテストスイートのメンテナンスコストや広範なプログラミングスキルの必要性といった制限に直面している。
人工知能(AI)は、自動化と改善されたプラクティスを通じて、これらの問題に対処する新たな機会を提供する。
論文 参考訳(メタデータ) (2024-08-12T15:26:36Z) - AI for non-programmers: Applied AI in the lectures for students without programming skills [0.0]
この研究は、応用AIのための実践的な計画スクリプトを提示する。
ドキュメント計画スクリプトは、AIアプリケーションパイプラインに基づいて、AIの概念と研究関連トピックをリンクする。
エネルギー管理の修士課程の講義シリーズは、AIを規律固有の講義にシームレスに統合する方法を示している。
論文 参考訳(メタデータ) (2024-02-06T17:26:24Z) - Generative AI in Writing Research Papers: A New Type of Algorithmic Bias
and Uncertainty in Scholarly Work [0.38850145898707145]
大規模言語モデル(LLM)と生成AIツールは、バイアスを特定し、対処する上での課題を提示している。
生成型AIツールは、不正な一般化、幻覚、レッド・チーム・プロンプトのような敵攻撃を目標とする可能性がある。
研究原稿の執筆過程に生成AIを組み込むことで,新しいタイプの文脈依存型アルゴリズムバイアスがもたらされることがわかった。
論文 参考訳(メタデータ) (2023-12-04T04:05:04Z) - Towards Possibilities & Impossibilities of AI-generated Text Detection:
A Survey [97.33926242130732]
大規模言語モデル(LLM)は、自然言語処理(NLP)の領域に革命をもたらし、人間のようなテキスト応答を生成する能力を持つ。
これらの進歩にもかかわらず、既存の文献のいくつかは、LLMの潜在的な誤用について深刻な懸念を提起している。
これらの懸念に対処するために、研究コミュニティのコンセンサスは、AI生成テキストを検出するアルゴリズムソリューションを開発することである。
論文 参考訳(メタデータ) (2023-10-23T18:11:32Z) - PaperCard for Reporting Machine Assistance in Academic Writing [48.33722012818687]
2022年11月にOpenAIが発表した質問応答システムChatGPTは,学術論文作成に活用可能な,さまざまな機能を実証した。
これは学術における著者概念に関する批判的な疑問を提起する。
我々は、人間の著者が記述プロセスにおけるAIの使用を透過的に宣言するための文書である"PaperCard"というフレームワークを提案する。
論文 参考訳(メタデータ) (2023-10-07T14:28:04Z) - The Future of AI-Assisted Writing [0.0]
我々は、情報検索レンズ(プル・アンド・プッシュ)を用いて、そのようなツールの比較ユーザスタディを行う。
我々の研究結果によると、ユーザーは執筆におけるAIのシームレスな支援を歓迎している。
ユーザはAI支援の書き込みツールとのコラボレーションも楽しんだが、オーナシップの欠如を感じなかった。
論文 参考訳(メタデータ) (2023-06-29T02:46:45Z) - ChatGPT and Works Scholarly: Best Practices and Legal Pitfalls in
Writing with AI [9.550238260901121]
我々は、このようなAIによる書き起こしが著作権に違反しているか、公正使用の安全な港に落ちているかを評価するためのアプローチを提供する。
AIは今後数年でより有能になる可能性が高いため、学術的な執筆活動にAIを統合するのは適切である。
論文 参考訳(メタデータ) (2023-05-04T15:38:20Z) - The Role of AI in Drug Discovery: Challenges, Opportunities, and
Strategies [97.5153823429076]
この分野でのAIのメリット、課題、欠点についてレビューする。
データ拡張、説明可能なAIの使用、従来の実験手法とAIの統合についても論じている。
論文 参考訳(メタデータ) (2022-12-08T23:23:39Z) - MONAI Label: A framework for AI-assisted Interactive Labeling of 3D
Medical Images [49.664220687980006]
注釈付きデータセットの欠如は、タスク固有の教師付き機械学習モデルをトレーニングする上で、大きなボトルネックとなる。
本稿では,人工知能(AI)モデルに基づくアプリケーション開発を支援する,フリーかつオープンソースなフレームワークであるmonAI Labelを紹介する。
論文 参考訳(メタデータ) (2022-03-23T12:33:11Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2)は、AIレコメンデーションにユーザの信頼度を明確に定量化し視覚化する。
これにより、AIシステムの予測を調べてテストすることで、システムの意思決定に対する信頼の基盤を確立することができる。
論文 参考訳(メタデータ) (2022-01-26T18:53:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。