論文の概要: Physics-Informed Neural Network for Discovering Systems with
Unmeasurable States with Application to Lithium-Ion Batteries
- arxiv url: http://arxiv.org/abs/2311.16374v1
- Date: Mon, 27 Nov 2023 23:35:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-11-30 09:24:09.822066
- Title: Physics-Informed Neural Network for Discovering Systems with
Unmeasurable States with Application to Lithium-Ion Batteries
- Title(参考訳): 物理インフォームドニューラルネットワークによる測定不能状態の発見とリチウムイオン電池への応用
- Authors: Yuichi Kajiura, Jorge Espin, Dong Zhang
- Abstract要約: 本稿では,損失項の少ないPINNをトレーニングするためのロバストな手法を導入し,最適化のためのより複雑なランドスケープを構築する。
各微分方程式から損失項を持つ代わりに、この方法は力学を損失関数に埋め込み、観測されたシステム出力と予測されたシステム出力の間の誤差を定量化する。
これは、既知のダイナミクスを使用してニューラルネットワーク(NN)から予測された状態を数値的に統合し、予測された出力のシーケンスを取得することで達成される。
- 参考スコア(独自算出の注目度): 6.375364752891239
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Combining machine learning with physics is a trending approach for
discovering unknown dynamics, and one of the most intensively studied
frameworks is the physics-informed neural network (PINN). However, PINN often
fails to optimize the network due to its difficulty in concurrently minimizing
multiple losses originating from the system's governing equations. This problem
can be more serious when the system's states are unmeasurable, like lithium-ion
batteries (LiBs). In this work, we introduce a robust method for training PINN
that uses fewer loss terms and thus constructs a less complex landscape for
optimization. In particular, instead of having loss terms from each
differential equation, this method embeds the dynamics into a loss function
that quantifies the error between observed and predicted system outputs. This
is accomplished by numerically integrating the predicted states from the neural
network(NN) using known dynamics and transforming them to obtain a sequence of
predicted outputs. Minimizing such a loss optimizes the NN to predict states
consistent with observations given the physics. Further, the system's
parameters can be added to the optimization targets. To demonstrate the ability
of this method to perform various modeling and control tasks, we apply it to a
battery model to concurrently estimate its states and parameters.
- Abstract(参考訳): 機械学習と物理を組み合わせることは未知のダイナミクスを発見するためのトレンドのアプローチであり、最も集中的に研究されているフレームワークの1つは物理情報ニューラルネットワーク(PINN)である。
しかし、ピンはシステムの制御方程式から生じる複数の損失を同時に最小化することが困難であるため、ネットワークの最適化に失敗することが多い。
リチウムイオン電池(libs)のように、システムの状態が測定できない場合、この問題はさらに深刻になる可能性がある。
本研究では,損失項の少ないPINNをトレーニングするための堅牢な手法を導入し,最適化のためのより複雑なランドスケープを構築する。
特に、各微分方程式からの損失項を持つ代わりに、この方法は、観測されたシステム出力と予測されたシステム出力間の誤差を定量化する損失関数にダイナミクスを組み込む。
これは、既知のダイナミクスを使用してニューラルネットワーク(NN)から予測された状態を数値的に統合し、予測された出力のシーケンスを取得することで達成される。
そのような損失を最小化すると、nn は物理学上の観測と一致する状態を予測できる。
さらに、最適化対象にシステムのパラメータを追加することができる。
本手法の様々なモデリングおよび制御タスクの実行能力を実証するために,バッテリモデルに適用し,その状態とパラメータを同時に推定する。
関連論文リスト
- Response Estimation and System Identification of Dynamical Systems via Physics-Informed Neural Networks [0.0]
本稿では,物理インフォームドニューラルネットワーク(PINN)を用いた力学系の同定と推定について検討する。
PINNは、既知の物理法則をニューラルネットワークの損失関数に直接埋め込むことによって、複雑な現象の単純な埋め込みを可能にするユニークな利点を提供する。
その結果、PINNは上記のすべてのタスクに対して、たとえモデルエラーがあっても、効率的なツールを提供することを示した。
論文 参考訳(メタデータ) (2024-10-02T08:58:30Z) - Enriched Physics-informed Neural Networks for Dynamic
Poisson-Nernst-Planck Systems [0.8192907805418583]
本稿では、動的Poisson-Nernst-Planck(PNP)方程式を解くために、メッシュレス深層学習アルゴリズム、EPINN(enriched Physics-informed Neural Network)を提案する。
EPINNは、従来の物理インフォームドニューラルネットワークを基盤フレームワークとして、損失関数のバランスをとるために適応的な損失重みを追加する。
数値計算の結果, 結合された非線形系の解法において, 従来の数値法よりも適用性が高いことがわかった。
論文 参考訳(メタデータ) (2024-02-01T02:57:07Z) - Model-Based Control with Sparse Neural Dynamics [23.961218902837807]
モデル学習と予測制御を統合した新しいフレームワークを提案する。
我々は,既存の最先端手法よりもクローズドループ性能を向上できることを示す。
論文 参考訳(メタデータ) (2023-12-20T06:25:02Z) - NeuralStagger: Accelerating Physics-constrained Neural PDE Solver with
Spatial-temporal Decomposition [67.46012350241969]
本稿では,NeuralStaggerと呼ばれる一般化手法を提案する。
元の学習タスクをいくつかの粗い解像度のサブタスクに分解する。
本稿では,2次元および3次元流体力学シミュレーションにおけるNeuralStaggerの適用例を示す。
論文 参考訳(メタデータ) (2023-02-20T19:36:52Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
本研究では,より複雑に結合した常微分方程式(ODE)を解く物理インフォームドニューラルネットワーク(PINN)の能力を評価する。
PINNの複雑性が増大するにつれて,これらのベンチマークに対する正しい解が得られないことが示される。
PINN損失のラプラシアンは,ネットワーク容量の不足,ODEの条件の低下,局所曲率の高さなど,いくつかの理由を明らかにした。
論文 参考訳(メタデータ) (2022-10-14T15:01:32Z) - Adaptive Self-supervision Algorithms for Physics-informed Neural
Networks [59.822151945132525]
物理情報ニューラルネットワーク(PINN)は、損失関数のソフト制約として問題領域からの物理的知識を取り入れている。
これらのモデルの訓練性に及ぼす座標点の位置の影響について検討した。
モデルがより高い誤りを犯している領域に対して、より多くのコロケーションポイントを段階的に割り当てる適応的コロケーション方式を提案する。
論文 参考訳(メタデータ) (2022-07-08T18:17:06Z) - Characterizing possible failure modes in physics-informed neural
networks [55.83255669840384]
科学機械学習における最近の研究は、いわゆる物理情報ニューラルネットワーク(PINN)モデルを開発した。
既存のPINN方法論は比較的自明な問題に対して優れたモデルを学ぶことができるが、単純なPDEであっても、関連する物理現象を学習するのに失敗する可能性があることを実証する。
これらの障害モードは,NNアーキテクチャの表現力の欠如によるものではなく,PINNのセットアップによって損失状況の最適化が極めて困難であることを示す。
論文 参考訳(メタデータ) (2021-09-02T16:06:45Z) - Data vs. Physics: The Apparent Pareto Front of Physics-Informed Neural Networks [8.487185704099925]
物理インフォームドニューラルネットワーク(PINN)は、有望なディープラーニング手法として登場した。
PINNは訓練が困難であり、データと物理損失関数を組み合わせた場合、損失重み付けを慎重に調整する必要があることが多い。
論文 参考訳(メタデータ) (2021-05-03T13:47:45Z) - Physics-Informed Neural Network Method for Solving One-Dimensional
Advection Equation Using PyTorch [0.0]
PINNのアプローチは、最適化の強い制約としてPDEを尊重しながらニューラルネットワークのトレーニングを可能にします。
標準的な小規模循環シミュレーションでは、従来のアプローチは乱流拡散モデルの効果とほぼ同じ大きさの擬似拡散効果を組み込むことが示されている。
テストされた全てのスキームのうち、ピンズ近似のみが結果を正確に予測した。
論文 参考訳(メタデータ) (2021-03-15T05:39:17Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
メタラーニング(MTL)アプローチを用いて訓練されたDNNベースのOPF予測器を提案する。
開発したOPF予測器はベンチマークIEEEバスシステムを用いてシミュレーションにより検証される。
論文 参考訳(メタデータ) (2020-12-21T17:39:51Z) - Liquid Time-constant Networks [117.57116214802504]
本稿では,時間連続リカレントニューラルネットワークモデルについて紹介する。
暗黙の非線形性によって学習システムの力学を宣言する代わりに、線形一階力学系のネットワークを構築する。
これらのニューラルネットワークは安定かつ有界な振る舞いを示し、ニューラル常微分方程式の族の中で優れた表現性をもたらす。
論文 参考訳(メタデータ) (2020-06-08T09:53:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。