論文の概要: Transport Equation based Physics Informed Neural Network to predict the
Yield Strength of Architected Materials
- arxiv url: http://arxiv.org/abs/2312.00003v1
- Date: Sat, 29 Jul 2023 12:42:03 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-15 15:08:56.705372
- Title: Transport Equation based Physics Informed Neural Network to predict the
Yield Strength of Architected Materials
- Title(参考訳): 輸送方程式に基づく物理情報ニューラルネットワークによる建築材料の降伏強度予測
- Authors: Akshansh Mishra
- Abstract要約: PINNモデルは、提供されたデータセットの過度な適合を避ける能力を示す、例外的な一般化能力を示す。
この研究は、特定の実世界のアプリケーションに対してアクティベーション関数を選択しながら、性能と計算効率のバランスを打つことの重要性を強調している。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this research, the application of the Physics-Informed Neural Network
(PINN) model is explored to solve transport equation-based Partial Differential
Equations (PDEs). The primary objective is to analyze the impact of different
activation functions incorporated within the PINN model on its predictive
performance, specifically assessing the Mean Squared Error (MSE) and Mean
Absolute Error (MAE). The dataset used in the study consists of a varied set of
input parameters related to strut diameter, unit cell size, and the
corresponding yield stress values. Through this investigation the aim is to
understand the effectiveness of the PINN model and the significance of choosing
appropriate activation functions for solving complex PDEs in real-world
applications. The outcomes suggest that the choice of activation function may
have minimal influence on the model's predictive accuracy for this particular
problem. The PINN model showcases exceptional generalization capabilities,
indicating its capacity to avoid overfitting with the provided dataset. The
research underscores the importance of striking a balance between performance
and computational efficiency while selecting an activation function for
specific real-world applications. These valuable findings contribute to
advancing the understanding and potential adoption of PINN as an effective tool
for solving challenging PDEs in diverse scientific and engineering domains.
- Abstract(参考訳): 本研究では,輸送方程式に基づく部分微分方程式(PDE)の解法として物理情報ニューラルネットワーク(PINN)モデルを適用した。
主な目的は、PINNモデルに組み込まれた異なるアクティベーション関数が予測性能に与える影響を分析し、特に平均二乗誤差(MSE)と平均絶対誤差(MAE)を評価することである。
この研究で使用されるデータセットは、ストラットの直径、単位細胞の大きさ、および対応する収量ストレス値に関連する様々な入力パラメータからなる。
本研究の目的は、PINNモデルの有効性と、現実のアプリケーションにおいて複雑なPDEを解決するための適切なアクティベーション関数を選択することの重要性を理解することである。
その結果、アクティベーション関数の選択は、特定の問題に対するモデルの予測精度に最小限の影響を与える可能性が示唆された。
PINNモデルは、提供されたデータセットの過度な適合を避ける能力を示している。
この研究は、特定の実世界のアプリケーションでアクティベーション関数を選択しながら、パフォーマンスと計算効率のバランスを取ることの重要性を強調している。
これらの貴重な発見は、様々な科学・工学分野におけるPDEの解決に有効なツールとして、PINNの理解と採用の促進に寄与する。
関連論文リスト
- DeltaPhi: Learning Physical Trajectory Residual for PDE Solving [54.13671100638092]
我々は,物理軌道残差学習(DeltaPhi)を提案し,定式化する。
既存のニューラル演算子ネットワークに基づく残差演算子マッピングのサロゲートモデルについて学習する。
直接学習と比較して,PDEの解法には物理残差学習が望ましいと結論づける。
論文 参考訳(メタデータ) (2024-06-14T07:45:07Z) - Physics Inspired Hybrid Attention for SAR Target Recognition [61.01086031364307]
本稿では,物理にヒントを得たハイブリットアテンション(PIHA)機構と,この問題に対処するためのOFA評価プロトコルを提案する。
PIHAは、物理的情報の高レベルなセマンティクスを活用して、ターゲットの局所的なセマンティクスを認識した特徴群を活性化し、誘導する。
提案手法は,ASCパラメータが同じ12のテストシナリオにおいて,他の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2023-09-27T14:39:41Z) - Error convergence and engineering-guided hyperparameter search of PINNs:
towards optimized I-FENN performance [0.0]
PINNコンポーネントの2つの重要な側面に着目し,I-FENNの厳格さと性能を向上させる。
本稿では,新しい総合的パフォーマンス指標のセットに基づく体系的な数値的アプローチを提案する。
提案された分析は、科学と工学の他の応用にも直接拡張することができる。
論文 参考訳(メタデータ) (2023-03-03T17:39:06Z) - Physics-Informed Neural Networks for Material Model Calibration from
Full-Field Displacement Data [0.0]
本研究では,実環境下でのフルフィールド変位と大域力データからモデルのキャリブレーションを行うためのPINNを提案する。
拡張PINNは、実験的な1次元データと合成フルフィールド変位データの両方から材料パラメータを識別できることを実証した。
論文 参考訳(メタデータ) (2022-12-15T11:01:32Z) - Physics-Aware Neural Networks for Boundary Layer Linear Problems [0.0]
物理インフォームドニューラルネットワーク(PINN)は、一般偏微分方程式(PDE)の解をニューラルネットワークの損失/コストの観点から何らかの形で加算することによって近似する。
本稿では,1つ以上の境界層が存在する線形PDEに対するPINNについて検討する。
論文 参考訳(メタデータ) (2022-07-15T21:15:06Z) - Auto-PINN: Understanding and Optimizing Physics-Informed Neural
Architecture [77.59766598165551]
物理インフォームドニューラルネットワーク(PINN)は、ディープラーニングのパワーを科学計算にもたらし、科学と工学の実践に革命をもたらしている。
本稿では,ニューラル・アーキテクチャ・サーチ(NAS)手法をPINN設計に適用したAuto-PINNを提案する。
標準PDEベンチマークを用いた包括的事前実験により、PINNの構造と性能の関係を探索することができる。
論文 参考訳(メタデータ) (2022-05-27T03:24:31Z) - Neural Operator with Regularity Structure for Modeling Dynamics Driven
by SPDEs [70.51212431290611]
偏微分方程式 (SPDE) は、大気科学や物理学を含む多くの分野において、力学をモデル化するための重要なツールである。
本研究では,SPDEによって駆動されるダイナミクスをモデル化するための特徴ベクトルを組み込んだニューラル演算子(NORS)を提案する。
動的Phi41モデルと2d Navier-Stokes方程式を含む様々なSPDE実験を行った。
論文 参考訳(メタデータ) (2022-04-13T08:53:41Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Stochastic analysis of heterogeneous porous material with modified
neural architecture search (NAS) based physics-informed neural networks using
transfer learning [0.0]
修正ニューラルアーキテクチャ探索法(NAS)に基づく物理インフォームド深層学習モデルを提案する。
高度不均質帯水層における地下水流動シミュレーションのベンチマークを行うため, 三次元流れモデルを構築した。
論文 参考訳(メタデータ) (2020-10-03T19:57:54Z) - Estimating Structural Target Functions using Machine Learning and
Influence Functions [103.47897241856603]
統計モデルから特定可能な関数として生じる対象関数の統計的機械学習のための新しい枠組みを提案する。
このフレームワークは問題とモデルに依存しないものであり、応用統計学における幅広い対象パラメータを推定するのに使用できる。
我々は、部分的に観測されていない情報を持つランダム/二重ロバストな問題において、いわゆる粗大化に特に焦点をあてた。
論文 参考訳(メタデータ) (2020-08-14T16:48:29Z) - Supervised Autoencoders Learn Robust Joint Factor Models of Neural
Activity [2.8402080392117752]
神経科学の応用は、行動結果とともに異なる領域の脳活動に対応する高次元予測因子を収集する。
予測因子と結果の結合因子モデルは自然であるが、これらのモデルの最大推定値は、モデルが不特定である場合に実際に苦労することがある。
本稿では,教師付きオートエンコーダに基づく代替推論手法を提案する。潜在因子に確率分布を配置するのではなく,高次元予測器の未知関数として定義する。
論文 参考訳(メタデータ) (2020-04-10T19:31:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。